Question
Evaluate : $$\int {\frac{1}{{1 + 3\,{{\sin }^2}x + 8\,{{\cos }^2}x}}} dx$$
A.
$$\frac{1}{6}{\tan ^{ - 1}}\left( {2\,\tan \,x} \right) + C$$
B.
$${\tan ^{ - 1}}\left( {2\,\tan \,x} \right) + C$$
C.
$$\frac{1}{6}{\tan ^{ - 1}}\left( {\frac{{2\,\tan \,x}}{3}} \right) + C$$
D.
none of these
Answer :
$$\frac{1}{6}{\tan ^{ - 1}}\left( {\frac{{2\,\tan \,x}}{3}} \right) + C$$
Solution :
$$I = \int {\frac{1}{{1 + 3\,{{\sin }^2}x + 8\,{{\cos }^2}x}}} dx$$
Dividing the numerator and denominator by $${\cos ^2}x,$$ we ge
$$\eqalign{
& I = \int {\frac{{{{\sec }^2}x}}{{{{\sec }^2}x + 3\,{{\tan }^2}x + 8}}} dx \cr
& \Rightarrow I = \int {\frac{{{{\sec }^2}x}}{{1 + {{\tan }^2}x + 3\,{{\tan }^2}x + 8}}dx} \cr
& \Rightarrow I = \int {\frac{{{{\sec }^2}x}}{{4\,{{\tan }^2}x + 9}}} dx \cr
& {\text{Putting}}\,\,\tan \,x = t \Rightarrow {\sec ^2}x\,dx = dt,\,{\text{we get}} \cr
& \Rightarrow I = \int {\frac{{dt}}{{4{t^2} + 9}}} \cr
& \Rightarrow I = \frac{1}{4}\int {\frac{{dt}}{{{t^2} + {{\left( {\frac{3}{2}} \right)}^2}}}} \cr
& \Rightarrow I = \frac{1}{4} \times \frac{1}{{\frac{3}{2}}}{\tan ^{ - 1}}\left( {\frac{t}{{\frac{3}{2}}}} \right) + C \cr
& \Rightarrow I = \frac{1}{6}{\tan ^{ - 1}}\left( {\frac{{2t}}{3}} \right) + C \cr
& \Rightarrow I = \frac{1}{6}{\tan ^{ - 1}}\left( {\frac{{2\,\tan \,x}}{3}} \right) + C \cr} $$