Question

Escape velocity from the earth is $$11.2\,km/s.$$   Another planet of same mass has radius $$\frac{1}{4}$$ times that of the earth. What is the escape velocity from another planet?

A. $$11.2\,km/s$$
B. $$44.8\,km/s$$
C. $$22.4\,km/s$$  
D. $$5.6\,km/s$$
Answer :   $$22.4\,km/s$$
Solution :
Compare the equation of escape velocity of earth and planet. Escape velocity is given by,
$${v_{es}} = \sqrt {\frac{{2G{M_e}}}{{{R_e}}}} $$
From a planet, $${{v'}_{es}} = \sqrt {\frac{{2G{M_p}}}{{{R_p}}}} $$
Therefore, $$\frac{{{{v'}_{es}}}}{{{v_{es}}}} = \sqrt {\frac{{2G{M_p}}}{{{R_p}}}} \times \sqrt {\frac{{{R_e}}}{{2G{M_e}}}} $$
It is given that,
mass of the planet = mass of the earth
i.e. $${M_p} = {M_e}$$
So, $$\frac{{{{v'}_{es}}}}{{{v_{es}}}} = \sqrt {\frac{{{R_e}}}{{{R_p}}}} \,......\left( {\text{i}} \right)$$
Given, $${R_p} = \frac{{{R_e}}}{4} \Rightarrow \frac{{{R_p}}}{{{R_e}}} = \frac{1}{4}\,\,{\text{and}}\,\,{v_{es{\text{ }}}} = 11.2\,km/s$$
Substituting in Eq. (i), we have
$$\frac{{{{v'}_{es}}}}{{11.2}} = \sqrt {\frac{4}{1}} = 2,{{v'}_{es}} = 11.2 \times 2 = 22.4\,km/s$$

Releted MCQ Question on
Basic Physics >> Gravitation

Releted Question 1

If the radius of the earth were to shrink by one percent, its mass remaining the same, the acceleration due to gravity on the earth’s surface would-

A. Decrease
B. Remain unchanged
C. Increase
D. Be zero
Releted Question 2

If $$g$$ is the acceleration due to gravity on the earth’s surface, the gain in the potential energy of an object of mass $$m$$ raised from the surface of the earth to a height equal to the radius $$R$$ of the earth, is-

A. $$\frac{1}{2}\,mgR$$
B. $$2\,mgR$$
C. $$mgR$$
D. $$\frac{1}{4}mgR$$
Releted Question 3

If the distance between the earth and the sun were half its present value, the number of days in a year would have been-

A. $$64.5$$
B. $$129$$
C. $$182.5$$
D. $$730$$
Releted Question 4

A geo-stationary satellite orbits around the earth in a circular orbit of radius $$36,000 \,km.$$   Then, the time period of a spy satellite orbiting a few hundred km above the earth's surface $$\left( {{R_{earth}} = 6400\,km} \right)$$    will approximately be-

A. $$\frac{1}{2}\,hr$$
B. $$1 \,hr$$
C. $$2 \,hr$$
D. $$4 \,hr$$

Practice More Releted MCQ Question on
Gravitation


Practice More MCQ Question on Physics Section