Question

Equation of the plane through the mid–point of the line segment joining the points $$P\left( {4,\,5,\, - 10} \right)$$   and $$Q\left( { - 1,\,2,\,1} \right)$$   and perpendicular to $$PQ$$  is :

A. $$\overrightarrow r .\left( {\frac{3}{2}\hat i + \frac{7}{2}\hat j - \frac{9}{2}\hat k} \right) = 45$$
B. $$\overrightarrow r .\left( { - \hat i + 2\hat j - \hat k} \right) = \frac{{135}}{2}$$
C. $$\overrightarrow r .\left( {5\hat i + 3\hat j - 11\hat k} \right) + \frac{{135}}{2} = 0$$
D. $$\overrightarrow r .\left( {5\hat i + 3\hat j - 11\hat k} \right) = \frac{{135}}{2}$$  
Answer :   $$\overrightarrow r .\left( {5\hat i + 3\hat j - 11\hat k} \right) = \frac{{135}}{2}$$
Solution :
$$\eqalign{ & {\text{Mid point of }}PQ{\text{ is}} = \left( {\frac{3}{2},\,\frac{7}{2},\,\frac{{ - 9}}{2}} \right) \cr & {\text{DR of the normal is}} \cr & = \left( {4 - \left( { - 1} \right)} \right),\,\left( {5 - 2} \right),\,\left( { - 10 - 1} \right) \cr & = 5,\,3,\, - 11 \cr & \therefore {\text{ Equation of plane is}} \cr & 5\left( {x - \frac{3}{2}} \right) + 3\left( {y - \frac{7}{2}} \right) - 11\left( {z + \frac{9}{2}} \right) = 0 \cr & \Rightarrow 5x + 3y - 11z = \frac{{135}}{2} \cr & \Rightarrow \overrightarrow r .\left( {5\hat i + 3\hat j - 11\hat k} \right) = \frac{{135}}{2} \cr} $$

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section