Question

\[\begin{array}{l} {\rm{Let\, }}f\left( x \right) = \left\{ \begin{array}{l} \sin \,x,\,x \ne n\pi \\ 2,\,x = n\pi ,\,n \in Z, \end{array} \right.\\ {\rm{and\, }}g\left( x \right) = \left\{ \begin{array}{l} {x^2} + 1,\,x \ne 2\\ 3,\,x = 2\,\, \end{array} \right. \end{array}\]
Then $$\mathop {\lim }\limits_{x \to 0} g\left( {f\left( x \right)} \right)$$   is :

A. 0
B. 1  
C. 3
D. none of these
Answer :   1
Solution :
\[\begin{array}{l} g\left\{ {f\left( x \right)} \right\} = \left\{ \begin{array}{l} {\left\{ {f\left( x \right)} \right\}^2} + 1,\,f\left( x \right) \ne 2\\ 3,\,f\left( x \right) = 2 \end{array} \right.\\ \therefore g\left\{ {f\left( x \right)} \right\} = \left\{ \begin{array}{l} {\sin ^2}x + 1,\,x \ne n\pi \\ 3,\,x = n\pi \end{array} \right. \end{array}\]
$$\eqalign{ & {\text{RH limit}} = \mathop {\lim }\limits_{x \to 0 + 0} g\left\{ {f\left( x \right)} \right\} \cr & = \mathop {\lim }\limits_{h \to 0} g\left\{ {f\left( {0 + h} \right)} \right\} \cr & = \mathop {\lim }\limits_{h \to 0} \left\{ {{{\sin }^2}\left( {0 + h} \right) + 1} \right\} \cr & = 1 \cr} $$
$$\eqalign{ & {\text{LH limit}} = \mathop {\lim }\limits_{x \to 0 - 0} g\left\{ {f\left( x \right)} \right\} \cr & = \mathop {\lim }\limits_{h \to 0} g\left\{ {f\left( {0 - h} \right)} \right\} \cr & = \mathop {\lim }\limits_{h \to 0} \left\{ {{{\sin }^2}\left( {0 - h} \right) + 1} \right\} \cr & = 1 \cr} $$

Releted MCQ Question on
Calculus >> Limits

Releted Question 1

lf $$f\left( x \right) = \sqrt {\frac{{x - \sin \,x}}{{x + {{\cos }^2}x}}} ,$$     then $$\mathop {\lim }\limits_{x\, \to \,\infty } f\left( x \right)$$    is-

A. $$0$$
B. $$\infty $$
C. $$1$$
D. none of these
Releted Question 2

If $$G\left( x \right) = - \sqrt {25 - {x^2}} $$     then $$\mathop {\lim }\limits_{x\, \to \,{\text{I}}} \frac{{G\left( x \right) - G\left( I \right)}}{{x - 1}}$$     has the value-

A. $$\frac{1}{{24}}$$
B. $$\frac{1}{{5}}$$
C. $$ - \sqrt {24} $$
D. none of these
Releted Question 3

$$\mathop {\lim }\limits_{n\, \to \,\infty } \left\{ {\frac{1}{{1 - {n^2}}} + \frac{2}{{1 - {n^2}}} + ..... + \frac{n}{{1 - {n^2}}}} \right\}$$        is equal to-

A. $$0$$
B. $$ - \frac{1}{2}$$
C. $$ \frac{1}{2}$$
D. none of these
Releted Question 4

If $$\eqalign{ & f\left( x \right) = \frac{{\sin \left[ x \right]}}{{\left[ x \right]}},\,\,\left[ x \right] \ne 0 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\, = 0,\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ x \right] = 0 \cr} $$
Where \[\left[ x \right]\] denotes the greatest integer less than or equal to $$x.$$ then $$\mathop {\lim }\limits_{x\, \to \,0} f\left( x \right)$$   equals

A. $$1$$
B. $$0$$
C. $$ - 1$$
D. none of these

Practice More Releted MCQ Question on
Limits


Practice More MCQ Question on Maths Section