Question

\[f\left( x \right) = \left\{ \begin{array}{l} 4,\,x < - 1\\ - 4x,\, - 1 \le x \le 0. \end{array} \right.\]
If $$f\left( x \right)$$  is an even function in $$R$$ then the definition of $$f\left( x \right)$$  in $$\left( {0,\, + \infty } \right)$$   is :

A. \[f\left( x \right) = \left\{ \begin{array}{l} 4x,\,0 < x \le 1\\ 4x,\,x > 1 \end{array} \right.\]  
B. \[f\left( x \right) = \left\{ \begin{array}{l} 4x,\,0 < x \le 1\\ - 4,\,x > 1 \end{array} \right.\]
C. \[f\left( x \right) = \left\{ \begin{array}{l} 4,\,0 < x \le 1\\ 4x,\,x > 1 \end{array} \right.\]
D. none of these
Answer :   \[f\left( x \right) = \left\{ \begin{array}{l} 4x,\,0 < x \le 1\\ 4x,\,x > 1 \end{array} \right.\]
Solution :
Function mcq solution image
An even function is symmetrical about the $$y$$-axis.
Clearly from the graph, the definition given in option (A) is correct.

Releted MCQ Question on
Calculus >> Function

Releted Question 1

Let $$R$$ be the set of real numbers. If $$f:R \to R$$   is a function defined by $$f\left( x \right) = {x^2},$$   then $$f$$ is:

A. Injective but not surjective
B. Surjective but not injective
C. Bijective
D. None of these.
Releted Question 2

The entire graphs of the equation $$y = {x^2} + kx - x + 9$$     is strictly above the $$x$$-axis if and only if

A. $$k < 7$$
B. $$ - 5 < k < 7$$
C. $$k > - 5$$
D. None of these.
Releted Question 3

Let $$f\left( x \right) = \left| {x - 1} \right|.$$    Then

A. $$f\left( {{x^2}} \right) = {\left( {f\left( x \right)} \right)^2}$$
B. $$f\left( {x + y} \right) = f\left( x \right) + f\left( y \right)$$
C. $$f\left( {\left| x \right|} \right) = \left| {f\left( x \right)} \right|$$
D. None of these
Releted Question 4

If $$x$$ satisfies $$\left| {x - 1} \right| + \left| {x - 2} \right| + \left| {x - 3} \right| \geqslant 6,$$       then

A. $$0 \leqslant x \leqslant 4$$
B. $$x \leqslant - 2\,{\text{or}}\,x \geqslant 4$$
C. $$x \leqslant 0\,{\text{or}}\,x \geqslant 4$$
D. None of these

Practice More Releted MCQ Question on
Function


Practice More MCQ Question on Maths Section