Question
\[{\rm{If\, }}f\left( x \right) = \left\{ \begin{array}{l}
p{x^2} - q,\,x \in \left[ {0,\,1} \right)\\
x + 1,\,x\, \in \left( {1,\,2} \right]
\end{array} \right.\]
and $$f\left( 1 \right) = 2$$ then the value of the pair $$\left( {p,\,q} \right)$$ for which $$f\left( x \right)$$ cannot be continuous at $$x=1$$ is :
A.
$$\left( {2,\,0} \right)$$
B.
$$\left( {1,\, - 1} \right)$$
C.
$$\left( {4,\,2} \right)$$
D.
$$\left( {1,\,1} \right)$$
Answer :
$$\left( {1,\,1} \right)$$
Solution :
$$f\left( x \right)$$ is continuous at $$x=1$$ if
$$\eqalign{
& \mathop {\lim }\limits_{h \to 0} f\left( {1 + h} \right) = \mathop {\lim }\limits_{h \to 0} f\left( {1 - h} \right) = f\left( 1 \right) = 2 \cr
& \mathop {\lim }\limits_{h \to 0} f\left( {1 + h} \right) = \mathop {\lim }\limits_{h \to 0} \left\{ {1 + h + 1} \right\} = 2 \cr
& \mathop {\lim }\limits_{h \to 0} f\left( {1 - h} \right) = \mathop {\lim }\limits_{h \to 0} \left\{ {p{{\left( {1 - h} \right)}^2} - q} \right\} = p - q \cr} $$
$$\therefore \,f\left( x \right)$$ is not continuous at $$x=1$$ if $$p - q \ne 2$$