Solution :

Using Bohr's postulate for radiation of spectral line, we have
Radiation of wavelength from $$C$$ to $$B$$
$${E_C} - {E_B} = \frac{{hc}}{{{\lambda _1}}}\,.......\left( {\text{i}} \right)$$
Radiation of wavelength from $$B$$ to $$A$$
$${E_B} - {E_A} = \frac{{hc}}{{{\lambda _2}}}\,.......\left( {{\text{ii}}} \right)$$
Radiation of wavelength from $$C$$ to $$A$$
$${E_C} - {E_A} = \frac{{hc}}{{{\lambda _3}}}\,.......\left( {{\text{iii}}} \right)$$
Also, $$\left( {{E_C} - {E_A}} \right) = \left( {{E_C} - {E_B}} \right) + \left( {{E_B} - {E_A}} \right)$$
$$\eqalign{
& \therefore \frac{{hc}}{{{\lambda _3}}} = \frac{{hc}}{{{\lambda _1}}} + \frac{{hc}}{{{\lambda _2}}}\, \cr
& {\text{or}}\,\,\frac{1}{{{\lambda _3}}} = \frac{1}{{{\lambda _1}}} + \frac{1}{{{\lambda _2}}} \cr
& \Rightarrow {\lambda _3} = \frac{{{\lambda _1}{\lambda _2}}}{{{\lambda _1} + {\lambda _2}}} \cr} $$