Question

During the propagation of electromagnetic waves in a medium:

A. Electric energy density is double of the magnetic energy density.
B. Electric energy density is half of the magnetic energy density.
C. Electric energy density is equal to the magnetic energy density.  
D. Both electric and magnetic energy densities are zero.
Answer :   Electric energy density is equal to the magnetic energy density.
Solution :
$${E_0} = C{B_0}{\text{ and }}C = \frac{1}{{\sqrt {{\mu _0}{\varepsilon _0}} }}$$
Electric energy density $$ = \frac{1}{2}{\varepsilon _0}E_0^2 = {\mu _E}$$
Magnetic energy density $$ = \frac{1}{2}\frac{{B{o^2}}}{{{\mu _0}}} = {\mu _B}$$
Thus, $${\mu _E} = {\mu _B}$$
Energy is equally divided between electric and magnetic field

Releted MCQ Question on
Modern Physics >> Modern Physics Miscellaneous

Releted Question 1

The maximum kinetic energy of photoelectrons emitted from a surface when photons of energy $$6\,eV$$  fall on it is $$4\,eV.$$  The stopping potential, in volt, is

A. 2
B. 4
C. 6
D. 10
Releted Question 2

Electrons with energy $$80\,keV$$  are incident on the tungsten target of an X-ray tube. $$K$$-shell electrons of tungsten have $$72.5\,keV$$  energy. X-rays emitted by the tube contain only

A. a continuous X-ray spectrum (Bremsstrahlung) with a minimum wavelength of $$0.155\mathop {\text{A}}\limits^ \circ $$
B. a continuous X-ray spectrum (Bremsstrahlung) with all wavelengths
C. the characteristic X-ray spectrum of tungsten
D. a continuous X-ray spectrum (Bremsstrahlung) with a minimum wavelength of $$0.155\mathop {\text{A}}\limits^ \circ $$  and the characteristic X-ray spectrum of tungsten.
Releted Question 3

The intensity of X-rays from a Coolidge tube is plotted against wavelength $$\lambda $$ as shown in the figure. The minimum wavelength found is $${\lambda _C}$$ and the wavelength of the $${K_\alpha }$$ line is $${\lambda _K}.$$  As the accelerating voltage is increased
Modern Physics Miscellaneous mcq question image

A. $${\lambda _K} - {\lambda _C}$$   increases
B. $${\lambda _K} - {\lambda _C}$$   decreases
C. $${\lambda _K}$$ increases
D. $${\lambda _K}$$ decreases
Releted Question 4

The potential difference applied to an X-ray tube is $$5k\,V$$  and the current through it is 3.2$$mA.$$  Then the number of electrons striking the target per second is

A. $$2 \times {10^{16}}$$
B. $$5 \times {10^{6}}$$
C. $$1 \times {10^{17}}$$
D. $$4 \times {10^{15}}$$

Practice More Releted MCQ Question on
Modern Physics Miscellaneous


Practice More MCQ Question on Physics Section