Question

Domain of definition of the function $$f\left( x \right) = \sqrt {{{\sin }^{ - 1}}\left( {2x} \right) + \frac{\pi }{6}} $$      for real valued $$x,$$  is

A. $$\left[ { - \frac{1}{4},\frac{1}{2}} \right]$$  
B. $$\left[ { - \frac{1}{2},\frac{1}{2}} \right]$$
C. $$\left( { - \frac{1}{2},\frac{1}{2}} \right)$$
D. $$\left[ { - \frac{1}{4},\frac{1}{4}} \right]$$
Answer :   $$\left[ { - \frac{1}{4},\frac{1}{2}} \right]$$
Solution :
For $$f\left( x \right) = \sqrt {{{\sin }^{ - 1}}\left( {2x} \right) + \frac{\pi }{6}} $$      to be defined and real if $$si{n^{ - 1}}2x + \frac{\pi }{6} \geqslant 0$$
$$ \Rightarrow {\sin ^{ - 1}}2x \geqslant - \frac{\pi }{6}\,......\left( 1 \right)$$
But we know that
$$ - \frac{\pi }{2} \leqslant {\sin ^{ - 1}}2x \leqslant \frac{\pi }{2}\,......\left( 2 \right)$$
Combining (1) and (2), we get
$$\eqalign{ & - \frac{\pi }{6} \leqslant {\sin ^{ - 1}}2x \leqslant \frac{\pi }{2} \cr & \Rightarrow \sin \left( { - \frac{\pi }{6}} \right) \leqslant 2x \leqslant \sin \left( {\frac{\pi }{2}} \right) \Rightarrow - \frac{1}{2} \leqslant 2x \leqslant 1 \cr & \Rightarrow - \frac{1}{4} \leqslant x \leqslant \frac{1}{2}\therefore {D_f} = \left[ { - \frac{1}{4},\frac{1}{2}} \right] \cr} $$

Releted MCQ Question on
Calculus >> Function

Releted Question 1

Let $$R$$ be the set of real numbers. If $$f:R \to R$$   is a function defined by $$f\left( x \right) = {x^2},$$   then $$f$$ is:

A. Injective but not surjective
B. Surjective but not injective
C. Bijective
D. None of these.
Releted Question 2

The entire graphs of the equation $$y = {x^2} + kx - x + 9$$     is strictly above the $$x$$-axis if and only if

A. $$k < 7$$
B. $$ - 5 < k < 7$$
C. $$k > - 5$$
D. None of these.
Releted Question 3

Let $$f\left( x \right) = \left| {x - 1} \right|.$$    Then

A. $$f\left( {{x^2}} \right) = {\left( {f\left( x \right)} \right)^2}$$
B. $$f\left( {x + y} \right) = f\left( x \right) + f\left( y \right)$$
C. $$f\left( {\left| x \right|} \right) = \left| {f\left( x \right)} \right|$$
D. None of these
Releted Question 4

If $$x$$ satisfies $$\left| {x - 1} \right| + \left| {x - 2} \right| + \left| {x - 3} \right| \geqslant 6,$$       then

A. $$0 \leqslant x \leqslant 4$$
B. $$x \leqslant - 2\,{\text{or}}\,x \geqslant 4$$
C. $$x \leqslant 0\,{\text{or}}\,x \geqslant 4$$
D. None of these

Practice More Releted MCQ Question on
Function


Practice More MCQ Question on Maths Section