Question

Distance of the point $$P\left( {\overrightarrow p } \right)$$  from the line $$\overrightarrow r = \overrightarrow a + \lambda \overrightarrow b $$    is :

A. $$\left| {\left( {\overrightarrow a - \overrightarrow p } \right) + \frac{{\left( {\left( {\overrightarrow p - \overrightarrow a } \right).\overrightarrow b } \right)\overrightarrow b }}{{{{\left| {\overrightarrow b } \right|}^2}}}} \right|$$
B. $$\left| {\left( {\overrightarrow b - \overrightarrow p } \right) + \frac{{\left( {\left( {\overrightarrow p - \overrightarrow a } \right).\overrightarrow b } \right)\overrightarrow b }}{{{{\left| {\overrightarrow b } \right|}^2}}}} \right|$$
C. $$\left| {\left( {\overrightarrow a - \overrightarrow p } \right) + \frac{{\left( {\left( {\overrightarrow p - \overrightarrow b } \right).\overrightarrow b } \right)\overrightarrow b }}{{{{\left| {\overrightarrow b } \right|}^2}}}} \right|$$  
D. None of these
Answer :   $$\left| {\left( {\overrightarrow a - \overrightarrow p } \right) + \frac{{\left( {\left( {\overrightarrow p - \overrightarrow b } \right).\overrightarrow b } \right)\overrightarrow b }}{{{{\left| {\overrightarrow b } \right|}^2}}}} \right|$$
Solution :
Let $$Q\left( {\overrightarrow q } \right)$$  be the foot of altitude drawn from $$P\left( {\overrightarrow p } \right)$$  to the line $$\overrightarrow r = \overrightarrow a + \lambda \overrightarrow b ,$$
$$\eqalign{ & \Rightarrow \left( {\overrightarrow q - \overrightarrow p } \right).\overrightarrow b = 0{\text{ and }}\overrightarrow q = \overrightarrow a + \lambda \overrightarrow b \cr & \Rightarrow \left( {\overrightarrow a + \lambda \overrightarrow b - \overrightarrow p } \right).\overrightarrow b = 0 \cr & {\text{or }}\left| {\left( {\overrightarrow a - \overrightarrow p } \right)} \right|.\overrightarrow b + \lambda {\left| {\overrightarrow b } \right|^2} = 0\,\,{\text{or }}\lambda = \frac{{\left( {\overrightarrow p - \overrightarrow a } \right).\overrightarrow b }}{{{{\left| {\overrightarrow b } \right|}^2}}} \cr & \Rightarrow \overrightarrow q - \overrightarrow p = \overrightarrow a + \frac{{\left( {\left( {\overrightarrow p - \overrightarrow a } \right).\overrightarrow b } \right)\overrightarrow b }}{{{{\left| {\overrightarrow b } \right|}^2}}} - \overrightarrow p \cr & \Rightarrow \left| {\overrightarrow q - \overrightarrow p } \right| = \left| {\left( {\overrightarrow a - \overrightarrow p } \right) + \frac{{\left( {\left( {\overrightarrow p - \overrightarrow a } \right).\overrightarrow b } \right)\overrightarrow b }}{{{{\left| {\overrightarrow b } \right|}^2}}}} \right| \cr} $$

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section