Question
Disregarding gravity, find the period of oscillation of the particle connected with four springs as shown in the figure.
(Given : $$\theta = {45^ \circ },\beta = {30^ \circ }$$ )
A.
$$\pi \sqrt {\frac{{2m}}{k}} $$
B.
$$\sqrt {\frac{{2m\pi }}{k}} $$
C.
$$\sqrt {\frac{{m\pi }}{{2k}}} $$
D.
$$\pi \sqrt {\frac{m}{{2k}}} $$
Answer :
$$\pi \sqrt {\frac{{2m}}{k}} $$
Solution :
$$\eqalign{
& 2k\,{\sin ^2}\theta = {k_1}\,\,{\text{or}}\,\,{k_1} = 2k\,{\sin ^2}\theta \cr
& {\text{and}}\,\,{k_2} = 2\left( {2k} \right){\sin ^2}\beta \cr} $$

$$\eqalign{
& {\text{Then}}\,\,{k_{{\text{eq}}}} = {k_1} + {k_2} = 2k\left[ {{{\sin }^2}\theta + 2{{\sin }^2}\beta } \right] \cr
& = 2k\left[ {{{\sin }^2}{{45}^ \circ } + 2{{\sin }^2}{{30}^ \circ }} \right] \cr
& = 2k\left( {\frac{1}{2} + \frac{1}{2}} \right) = 2k \cr
& {\text{Then}}\,\,T = 2\pi \sqrt {\frac{m}{{{k_{{\text{eq}}}}}}} = 2\pi \sqrt {\frac{m}{{2k}}} = \pi \sqrt {\frac{{2m}}{k}} \cr} $$