Question

$${\cot ^{ - 1}}\left( {\sqrt {\cos \alpha } } \right) - {\tan ^{ - 1}}\left( {\sqrt {\cos \alpha } } \right) = x,$$       then $$\sin x = $$

A. $${\tan ^2}\left( {\frac{\alpha }{2}} \right)$$  
B. $${\cot ^2}\left( {\frac{\alpha }{2}} \right)$$
C. $$\tan \alpha $$
D. $${\cot}\left( {\frac{\alpha }{2}} \right)$$
Answer :   $${\tan ^2}\left( {\frac{\alpha }{2}} \right)$$
Solution :
$$\eqalign{ & {\cot ^{ - 1}}\left( {\sqrt {\cos \alpha } } \right) - {\tan ^{ - 1}}\left( {\sqrt {\cos \alpha } } \right) = x \cr & {\tan ^{ - 1}}\left( {\frac{1}{{\sqrt {\cos \alpha } }}} \right) - {\tan ^{ - 1}}\left( {\sqrt {\cos \alpha } } \right) = x \cr & \Rightarrow \,\,{\tan ^{ - 1}}\frac{{\frac{1}{{\sqrt {\cos \alpha } }} - \sqrt {\cos \alpha } }}{{1 + \frac{1}{{\sqrt {\cos \alpha } }}.\sqrt {\cos \alpha } }} = x \cr & \Rightarrow \,\,{\tan ^{ - 1}}\frac{{1 - \cos \alpha }}{{2\sqrt {\cos \alpha } }} = x \cr & \Rightarrow \,\,\tan x = \frac{{1 - \cos \alpha }}{{2\sqrt {\cos \alpha } }}\,\,{\text{or }}\cot x = \frac{{2\sqrt {\cos \alpha } }}{{1 - \cos \alpha }} \cr & \Rightarrow \,\,\sin x = \frac{{1 - \cos \alpha }}{{1 + \cos \alpha }} \cr & = \frac{{1 - \left( {1 - 2{{\sin }^2}\frac{\alpha }{2}} \right)}}{{1 + 2{{\cos }^2}\frac{\alpha }{2} - 1}}\,\,{\text{or }}\sin x = {\tan ^2}\frac{\alpha }{2} \cr} $$

Releted MCQ Question on
Trigonometry >> Inverse Trigonometry Function

Releted Question 1

The value of $$\tan \left[ {{{\cos }^{ - 1}}\left( {\frac{4}{5}} \right) + {{\tan }^{ - 1}}\left( {\frac{2}{3}} \right)} \right]$$      is

A. $$\frac{6}{{17}}$$
B. $$\frac{7}{{16}}$$
C. $$\frac{16}{{7}}$$
D. none
Releted Question 2

If we consider only the principle values of the inverse trigonometric functions then the value of $$\tan \left( {{{\cos }^{ - 1}}\frac{1}{{5\sqrt 2 }} - {{\sin }^{ - 1}}\frac{4}{{\sqrt {17} }}} \right)$$      is

A. $$\frac{{\sqrt {29} }}{3}$$
B. $$\frac{{29}}{3}$$
C. $$\frac{{\sqrt {3}}}{29}$$
D. $$\frac{{3}}{29}$$
Releted Question 3

The number of real solutions of $${\tan ^{ - 1}}\sqrt {x\left( {x + 1} \right)} + {\sin ^{ - 1}}\sqrt {{x^2} + x + 1} = \frac{\pi }{2}$$         is

A. zero
B. one
C. two
D. infinite
Releted Question 4

If $${\sin ^{ - 1}}\left( {x - \frac{{{x^2}}}{2} + \frac{{{x^3}}}{4} - .....} \right) + {\cos ^{ - 1}}\left( {{x^2} - \frac{{{x^4}}}{2} + \frac{{{x^6}}}{4} - .....} \right) = \frac{\pi }{2}$$             for $$0 < \left| x \right| < \sqrt 2 ,$$   then $$x$$ equals

A. $$ \frac{1}{2}$$
B. 1
C. $$ - \frac{1}{2}$$
D. $$- 1$$

Practice More Releted MCQ Question on
Inverse Trigonometry Function


Practice More MCQ Question on Maths Section