Question

Consider points $$A,\,B,\,C$$   and $$D$$ with position vectors $$7\hat i - 4\hat j + 7\hat k,\,\hat i - 6\hat j + 10\hat k,\, - \hat i - 3\hat j + 4\hat k$$         and $$5\hat i - \hat j + 5\hat k$$   respectively. Then $$ABCD$$   is a :

A. parallelogram but not a rhombus
B. square
C. rhombus
D. none of these  
Answer :   none of these
Solution :
$$A = \left( {7,\, - 4,\,7} \right),\,B = \left( {1,\, - 6,\,10} \right),\,C = \left( { - 1,\, - 3,\,4} \right)$$          and $$D = \left( {5,\, - 1,\,5} \right)$$
$$\eqalign{ & AB = \sqrt {{{\left( {7 - 1} \right)}^2} + {{\left( { - 4 + 6} \right)}^2} + {{\left( {7 - 10} \right)}^2}} \cr & = \sqrt {36 + 4 + 9} \cr & = 7 \cr} $$
Similarly $$BC = 7,\,CD = \sqrt {41} ,\,DA = \sqrt {17} $$
$$\therefore $$ None of the options is satisfied.

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section