Solution :
For $$i \approx {90^ \circ }$$ at air liquid interface we have by Snell’s law
$$\eqalign{
& \mu = \frac{{\sin {{90}^ \circ }}}{{\sin r}} \cr
& \therefore \,\,\sin r = \frac{1}{\mu } \cr} $$
According to Brewster’s law, refractive index of liquid
$$\left( \mu \right)$$ is equal to tangent of polarising angle
$$\eqalign{
& \because \,\,\tan {i_b} = \frac{{1.5}}{\mu } \cr
& \therefore \,\,\sin {i_b} = \frac{{1.5}}{{\sqrt {{\mu ^2} + {{1.5}^2}} }} \cr} $$
Here, $$\sin r < \sin {i_b}$$

$$\eqalign{
& \therefore \,\,\frac{1}{\mu } \leqslant \frac{{1.5}}{{\sqrt {{\mu ^2} + {{\left( {1.5} \right)}^2}} }} \cr
& {\text{or, }}\sqrt {{\mu ^2} + {{\left( {1.5} \right)}^2}} \leqslant 1.5 \times \mu \cr
& \Rightarrow \,\,{\mu ^2} + {\left( {1.5} \right)^2} \leqslant {\left( {\mu \times 1.5} \right)^2} \cr
& \Rightarrow \,\,\mu \geqslant \frac{3}{{\sqrt 5 }} \cr
& {\text{i}}{\text{.e}}{\text{., minimum}} \cr} $$
value of $$\mu $$ should be $$\frac{3}{{\sqrt 5 }}$$