181.
A gas absorbs a photon of $$355 \,nm$$ and emits at two wavelengths. If one of the emissions is at $$680\, nm,$$ the other is at :
A
1035 $$nm$$
B
325 $$nm$$
C
743 $$nm$$
D
518 $$nm$$
Answer :
743 $$nm$$
View Solution
Discuss Question
Energy of absorbed photon = Sum of the energies of emitted photon
$$\eqalign{
& \frac{{hc}}{\lambda } = \frac{{hc}}{{{\lambda _1}}} + \frac{{hc}}{{{\lambda _2}}}\,\,or\,\,\frac{1}{\lambda } = \frac{1}{{{\lambda _1}}} + \frac{1}{{{\lambda _2}}} \cr
& \frac{1}{{355 \times {{10}^{ - 9}}}} = \frac{1}{{680 \times {{10}^{ - 9}}}} + \frac{1}{{{\lambda _2}}} \cr
& \frac{1}{{{\lambda _2}}} = \frac{1}{{355 \times {{10}^{ - 9}}}} - \frac{1}{{680 \times {{10}^{ - 9}}}} \cr
& = 1.346 \times {10^6} \cr
& {\text{or}}\,\,\,\,{\lambda _2} = \frac{1}{{1.346 \times {{10}^6}}} \cr
& = 743 \times {10^{ - 9}}m \cr
& = 743nm \cr} $$
182.
The de-Broglie wavelength of a particle with mass $$1 g$$ and velocity $$100 m/s$$ is
A
$$6.63 \times {10^{ - 33}}m$$
B
$$6.63 \times {10^{ - 34}}m$$
C
$$6.63 \times {10^{ - 35}}m$$
D
$$6.65 \times {10^{ - 36}}m$$
Answer :
$$6.63 \times {10^{ - 33}}m$$
View Solution
Discuss Question
$$\eqalign{
& p = \frac{h}{\lambda }{\text{(de - Broglie equation)}} \cr
& \lambda = \frac{h}{{mv}}\,\,\left( {\because \,\,p = mv} \right) \cr
& h = 6.625 \times {10^{ - 34}} \cr
& \,\,\,\,\, \approx 6.63 \times {10^{ - 34}}kg/s \cr
& \lambda = \frac{{6.63 \times {{10}^{ - 34}}kg\,{m^2}/s}}{{{{10}^{ - 3}}kg \times 100m/s}} \cr
& \,\,\,\,\, = 6.63 \times {10^{ - 33}}m \cr} $$
183.
The energy of an electron in first Bohr orbit of $$H$$-atom is $$ - 13.6\,eV.$$ The energy value of electron in the excited state of $$L{i^{2 + }}$$ is :
A
$$ - 27.2\,eV$$
B
$$30.6\,eV$$
C
$$ - 30.6\,eV$$
D
$$27.2\,eV$$
Answer :
$$ - 30.6\,eV$$
View Solution
Discuss Question
$$\eqalign{
& {\text{For }}L{i^{2 + }}{\text{ ion}} \cr
& E = - 13.6 \times \frac{{{Z^2}}}{{{n^2}}} = - 13.6 \times \frac{{{{\left( 3 \right)}^2}}}{{{{\left( 2 \right)}^2}}} \cr
& = \frac{{ - 13.6 \times 9}}{4} = - 30.6\,eV \cr} $$
184.
Table-tennis ball has a mass $$10\,g$$ and a speed of $$100\,m/s.$$ If speed can be measured within an accuracy of $$10\% ,$$ what will be the uncertainty in speed and position respectively ?
A
$$10\,m/\sec ,4 \times {10^{ - 33}}\,m$$
B
$$10\,m/\sec ,5.27 \times {10^{ - 34}}\,m$$
C
$$0.1\,m/\sec ,5 \times {10^{ - 34}}\,m$$
D
$${\text{None of these}}$$
Answer :
$$10\,m/\sec ,5.27 \times {10^{ - 34}}\,m$$
View Solution
Discuss Question
$${\text{Uncertainty in the speed of ball}}$$ $$ = \frac{{100 \times 10}}{{100}} = 10\,m/s$$
$$\Delta x.m\Delta v = \frac{h}{{4\pi }}$$
$$\eqalign{
& {\text{Uncertainty in the position,}} \cr
& \Delta x = \frac{h}{{4\pi m\Delta v}} \cr
& \,\,\,\,\,\,\,\, = \frac{{6.626 \times {{10}^{ - 34}}}}{{4 \times 3.14 \times 10 \times {{10}^{ - 3}} \times 10}} \cr
& \,\,\,\,\,\,\,\, = 5.27 \times {10^{ - 34}}\,m \cr} $$
185.
The isotopes of hydrogen are:
A
Tritium and protium only
B
Protium and deuterium only
C
Protium, deuterium and tritium
D
Deuterium and tritium only
Answer :
Protium, deuterium and tritium
View Solution
Discuss Question
Hydrogen has three isotopes:
Protium $$\,\left( {{}_1{H^1}} \right),$$ deuterium $$\left( {{}_1{H^2}} \right)$$ and tritium $$\left( {{}_1{H^3}} \right).$$
186.
In a multi-electron atom, which of the following orbitals described by the three quantum members will have the same energy in the absence of magnetic and electric fields?
(A) $$n = 1,\,l = 0,\,m = 0$$
(B) $$n = 2,\,l = 0,\,m = 0$$
(C) $$n = 2,\,l = 1,\,m = 1$$
(D) $$n = 3,\,l = 2,\,m = 1$$
(E) $$n = 3,\,l = 2,\,m = 0$$
A
(D) and (E)
B
(C) and (D)
C
(B) and (C)
D
(A) and (B)
Answer :
(D) and (E)
View Solution
Discuss Question
The energy of an orbital is given by $$\left( {n + l} \right)$$ in (D) and (C). $$\left( {n + l} \right)$$ value is $$(3+2) = 5$$ hence they will have same energy, since there n values are also same.
187.
An orbital is described with the help of a wave function. Since many wave functions are possible for an electron, there are many atomic orbitals. When atom is placed in a magnetic field the possible number of orientations for an orbital of azimuthal quantum number 3 is
A
three
B
two
C
five
D
seven
Answer :
seven
View Solution
Discuss Question
When $$l$$ = 3, as $${m_l} \simeq \left( {2l + 1} \right) = 7$$
188.
Which of the following configurations represents a noble gas ?
A
$$1{s^2}2{s^2}2{p^6}3{s^2}3{p^6}3{d^{10}}4{s^2}4{p^6}4{d^{10}}5{s^2}$$
B
$$1{s^2}2{s^2}2{p^6}3{s^2}3{p^6}3{d^{10}}4{s^2}4{f^{14}}5{s^2}$$
C
$$1{s^2}2{s^2}2{p^6}3{s^2}3{p^6}3{d^{10}}4{s^2}4{p^6}4{d^{10}}5{s^2}5{p^6}$$
D
$$1{s^2}2{s^2}2{p^6}3{s^2}3{p^6}3{d^{10}}4{s^2}4{p^6}4{d^{10}}5{s^2}5{p^3}$$
Answer :
$$1{s^2}2{s^2}2{p^6}3{s^2}3{p^6}3{d^{10}}4{s^2}4{p^6}4{d^{10}}5{s^2}5{p^6}$$
View Solution
Discuss Question
The outermost shell configuration of the element shows 8 electrons hence it is a noble gas.
189.
The orbital diagram in which the Aufbau principle is violated is:
A
(a)
B
(b)
C
(c)
D
(d)
Answer :
(b)
View Solution
Discuss Question
According to Aufbau principle, the orbital of lower energy $$(2s)$$ should be fully filled before the filling of orbital of higher energy starts.
190.
Which one of the following sets of ions represents a collection of isoelectronic species?
A
$${N^{3 - }},{O^{2 - }},{F^ - },{S^{2 - }}$$
B
$$L{i^ + },N{a^ + },M{g^{2 + }},C{a^{2 + }}$$
C
$${K^ + },C{l^ - },C{a^{2 + }},S{c^{3 + }}$$
D
$$B{a^{2 + }},S{r^{2 + }},{K^ + },C{a^{2 + }}$$
Answer :
$${K^ + },C{l^ - },C{a^{2 + }},S{c^{3 + }}$$
View Solution
Discuss Question
$$\left( {\text{A}} \right)\,\,{N^{3 - }} = 7 + 3 = 10{e^ - },$$ $${O^ - } \to 8 + 2 = 10{e^ - }$$
$${F^ - } = 9 + 1 = 10{e^ - },$$ $${S^{ - - }} \to 16 + 2 = 18{e^ - }$$ $${\text{(not}}\,\,{\text{iso}}\,\,{\text{electronic)}}$$
$$\left( {\text{B}} \right)\,\,L{i^ + } = 3 + 1 = 4{e^ - },$$ $$N{a^ + } = 11 - 1 = 10{e^ - },$$
$$M{g^{ + + }} = 12 - 2 = 10{e^ - }$$
$$C{a^{ + + }} = 20 - 2 = 18{e^ - }$$ $${\text{(not}}\,\,{\text{iso}}\,\,{\text{electronic)}}$$
$$\left( {\text{C}} \right)\,\,{K^ + } = 19 - 1 = 18{e^ - },$$ $$C{\ell ^ - } = 17 + 1 = 18{e^ - },$$
$$C{a^{ + + }} = 20 - 2 = 18e,$$ $$S{c^{3 + }} = 21 - 3 = 18{e^ - }$$ $${\text{(iso}}\,\,{\text{electronic)}}$$
$$\left( {\text{D}} \right)\,\,B{a^{ + + }}56 - 2 = 54e,$$ $$S{r^{ + + }}38 - 2 = 36{e^ - }$$
$${K^ + } = 9 - 1 = 18{e^ - },$$ $$C{a^{ + + }} = 20 - 2 = 18{e^ - }$$ $${\text{(not iso}}\,\,{\text{electronic)}}$$