According to the orbital concept, each carbon atom in benzene is $$s{p^2}$$ - hybridised and one $$p$$ - orbital of each carbon remains unhybridised. The $$\pi $$ - electron charge in benzene is not confined to space between two carbon atoms as in
ethylene, but is spread over a greater area. This is known as the delocalisation of the electron charge.
112.
An organic compound $${C_6}{H_{12}}\left( X \right)$$ on reduction gives $${C_6}{H_{14}}\left( Y \right).$$ $$X$$ on ozonolysis gives two aldehydes $${C_2}{H_4}O\left( {\text{I}} \right)$$ and $${C_4}{H_8}O\left( {{\text{II}}} \right).$$ Identify the compounds $$X, Y$$ and aldehydes $$\left( {\text{I}} \right)$$ and $$\left( {{\text{II}}} \right).$$
The reactivity depends upon the stability of the carbocation formed by addition of \[{{H}^{+}}.\] The carbocations resulting from alkenes ( I, II and III ) are respectively
Since the stability decreases in the order : $$Z > Y > X,$$ therefore, reactivity decreases in the order : III > II > I.
114.
Complete the following reaction by identifying $$X$$ and $$Y.$$
\[C{{H}_{3}}C{{H}_{2}}C\equiv CH\xrightarrow{NaN{{H}_{2}}}X\] \[\xrightarrow{{{C}_{2}}{{H}_{5}}Br}Y\]
A
$$X = C{H_3}C{H_2}COONa,$$ $$Y = C{H_3}C{H_2}CH = C{H_2}$$
Conformations of $$n$$ - butane are as under
Staggered conformation has minimum repulsion, so it is the most stable. The order of stability is staggered > gauche > eclipsed Energy order eclipsed > gauche > staggered
116.
The hydrocarbon which can react with sodium in liquid
ammonia is
A
$$C{H_3}C{H_2}C{H_2}C \equiv CC{H_2}C{H_2}C{H_3}$$
Alkynes having terminal $$ - C \equiv H$$ react with Na in liquid
ammonia to yield $${H_2}$$ gas of the given compounds $$C{H_3}C{H_2}C \equiv CH$$ can react with Na in liquid $$N{H_3}$$ so the correct answer is (B).
\[C{{H}_{3}}C{{H}_{2}}C\equiv CH\xrightarrow[\text{liquid}\,\,N{{H}_{3}}]{Na\,\,\text{in}}\] \[C{{H}_{3}}C{{H}_{2}}C\equiv {{C}^{-}}N{{a}^{+}}+\frac{1}{2}{{H}_{2}}\left( g \right)\]
117.
Which of the following compounds will react with $$Na$$ to form 4, 5-diethyloctane?
A
\[C{{H}_{3}}C{{H}_{2}}C{{H}_{2}}C{{H}_{2}}Br\]
B
\[C{{H}_{3}}C{{H}_{2}}C{{H}_{2}}\underset{\begin{smallmatrix}
|\,\,\,\,\, \\
C{{H}_{3}}
\end{smallmatrix}}{\mathop{-CH-}}\,C{{H}_{2}}C{{H}_{2}}Br\]
C
\[C{{H}_{3}}C{{H}_{2}}C{{H}_{2}}C{{H}_{2}}\underset{\begin{smallmatrix}
|\,\,\,\,\, \\
Br\,\,\,\,
\end{smallmatrix}}{\mathop{-CH-}}\,C{{H}_{3}}\]
D
\[C{{H}_{3}}C{{H}_{2}}C{{H}_{2}}\underset{\begin{smallmatrix}
|\,\,\,\,\, \\
Br\,\,\,\,
\end{smallmatrix}}{\mathop{-CH-}}\,C{{H}_{2}}C{{H}_{3}}\]
118.
The synthesis of 3-octyne is achieved by adding a bromoalkane into a mixture of sodium amide and an alkyne. The bromoalkane and alkyne respectively are
A
$$BrC{H_2}C{H_2}C{H_2}C{H_2}\,{\text{and}}\,C{H_2}C{H_2}C = CH$$
B
$$BrC{H_2}C{H_2}C{H_3}\,{\text{and}}\,C{H_2}C{H_2}C = CH$$
C
$$BrC{H_2}C{H_2}C{H_2}C{H_2}C{H_3}\,{\text{and}}\,C{H_3}C = CH$$
D
$$BrC{H_2}C{H_2}C{H_2}C{H_3}\,{\text{and}}\,C{H_3}C{H_2}C = CH$$
Anti addition of hydrogen atoms to the triple bond occurs when alkynes are reduced with sodium ( or lithium ) metal in ammonia, ethylamine, or alcohol at
low temperatures, This reaction called, a dissolving metal reduction, produces an $$\left( E \right) - $$ or $$trans$$ - alkene. Sodium in liq. $$N{H_3}$$ is used as a source of electrons in the reduction of an alkyne to a $$trans$$ alkene.
120.
What happens when calcium carbide is treated with water?