71.
An aqueous solution of titanium chloride, when subjected to magnetic measurement, measured zero magnetic moment. Assuming the octahedral complex in aqueous solution, the formulae of the complex is :
A
$$\left[ {Ti{{\left( {{H_2}O} \right)}_6}} \right]C{l_2}$$
B
$$\left[ {Ti{{\left( {{H_2}O} \right)}_6}} \right]C{l_4}$$
C
$$\left[ {TiC{l_3}{{\left( {{H_2}O} \right)}_3}} \right]$$
D
$$\left[ {TiC{l_2}{{\left( {{H_2}O} \right)}_4}} \right]$$
$$\left[ {Ti{{\left( {{H_2}O} \right)}_6}} \right]C{l_4}$$
Coordination number 6 $$ \Rightarrow $$ octahedral complex
$$Ti$$ is in $$+4$$ oxidations state $$ \Rightarrow $$ no unpaired electrons
$$ \Rightarrow $$ magnetic moment $$= 0 B.M.$$
72.
A coordination complex compound of cobalt has the molecular formula containing five ammonia molecules, one nitro group and two chlorine atoms for one cobalt atom. One mole of this compound produces three mole ions in an aqueous solution. On reacting this solution with excess of $$AgN{O_3}s$$ olution, we get two moles of $$AgCl$$ precipitate. The ionic formula for this complex would be
A
$$\left[ {Co{{\left( {N{H_3}} \right)}_5}\left( {N{O_2}} \right)} \right]C{l_2}$$
B
$$\left[ {Co{{\left( {N{H_3}} \right)}_5}Cl} \right]\left[ {Cl\left( {N{O_2}} \right)} \right]$$
The complex gives three ions in aqueous solution.
∴ The complex should be $$\left[ {CO{{\left( {N{H_3}} \right)}_5}N{O_2}} \right]C{l_2}.$$
It will give three ions on dissociation as follows :
$$\left[ {Co{{\left( {N{H_3}} \right)}_5}N{O_2}} \right]C{l_2} \to $$ $$\mathop {{{\left[ {Co{{\left( {N{H_3}} \right)}_5}N{O_2}} \right]}^{2 + }}}\limits_{1\,mol} + $$ $$\mathop {2C{l^ - }}\limits_{2\,mol} {\text{(Counter ion)}}$$
$${\text{2}}C{l^ - } + 2AgN{O_3} \to \mathop {2AgCl}\limits_{{\text{Silver ppt}}} + 2NO_3^ - $$
73.
In the process of extraction of gold,
Roasted gold ore $$ + C{N^ - } + {H_2}O\mathop \to \limits^{{O_2}} \left[ X \right] + O{H^ - }$$
$$\left[ X \right] + Zn \to \left[ Y \right] + Au$$
Identify the complexes $$\left[ X \right]\,\,{\text{and}}\,\,\left[ Y \right]$$
In $${\left[ {Mn{{\left( {CN} \right)}_6}} \right]^{3 - }},$$ oxidation state of $$Mn = + 3,M{n^{3 + }} = 3{d^4}$$
It has two unpaired electrons.
$$\eqalign{
& \mu = \sqrt {n\left( {n + 2} \right)} \cr
& \,\,\,\,\, = \sqrt {2\left( {2 + 2} \right)} \cr
& \,\,\,\,\, = \sqrt 8 \cr
& \,\,\,\,\, = 2.82\,B.M. \cr} $$
76.
Which one of the following cyano complexes would exhibit the lowest value of paramagnetic behaviour?
$$\left( {{\text{At}}\,{\text{Nos}}:\,Cr = 24,\,Mn = 25,\,Fe = 26,\,Co = 27} \right)$$
A
$${\left[ {Co{{\left( {CN} \right)}_6}} \right]^{3 - }}$$
B
$${\left[ {Fe{{\left( {CN} \right)}_6}} \right]^{3 - }}$$
C
$${\left[ {Mn{{\left( {CN} \right)}_6}} \right]^{3 - }}$$
D
$${\left[ {Cr{{\left( {CN} \right)}_6}} \right]^{3 - }}$$
$$\eqalign{
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\text{No}}{\text{. of unpaired electron }} \cr
& \left( {\text{A}} \right)C{o^{3 + }}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,4 \cr
& \left( {\text{B}} \right)F{e^{3 + }}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,1 \cr
& \left( {\text{C}} \right)M{n^{3 + }}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,4 \cr
& \left( {\text{D}} \right)C{r^{3 + }}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,3 \cr} $$
The effective magnetic moment is given by the number of unpaired electrons in a substance, the lesser the number of unpaired electrons lower is its magnetic moment in Bohr — Magneton and lower shall be its paramagnetism
77.
The correct energy level diagram for $${\left[ {NiC{l_4}} \right]^{2 - }}$$ is
The complex $$\left[ {Cr{{\left( {N{H_3}} \right)}_6}} \right]C{l_3}$$ involves $${d^2}s{p^3}$$ hybridisation as it involves $$(n -1)d$$ orbitals for hybridisation. It is an inner orbital complex.
79.
Mark the incorrect statement.
A
Inner orbital (low spin) complexes involve $${d^2}s{p^3}$$ hybridisation.
B
Outer orbital (high spin) complexes involve $$s{p^3}{d^2}$$ hybridisation.
C
Tetrahedral complexes generally involve $$ds{p^2}$$ hybridisation.
D
Stereoisomerism involves geometrical and optical isomerism.
Answer :
Tetrahedral complexes generally involve $$ds{p^2}$$ hybridisation.