Solution :
In case I, when charge $$+Q$$ is situated at $$C.$$

Electric potential energy of system,
$${U_1} = \frac{1}{{4\pi {\varepsilon _0}}}\frac{{\left( q \right)\left( { - q} \right)}}{{2L}} + \frac{1}{{4\pi {\varepsilon _0}}}\frac{{\left( { - q} \right)Q}}{L} + \frac{1}{{4\pi {\varepsilon _0}}}\frac{{qQ}}{L}$$
In case II, when charge $$+Q$$ is moved from $$C$$ to $$D.$$

Electric potential energy of system in that case,
$${U_2} = \frac{1}{{4\pi {\varepsilon _0}}} \cdot \frac{{\left( q \right)\left( { - q} \right)}}{{2L}} + \frac{1}{{4\pi {\varepsilon _0}}} \cdot \frac{{qQ}}{{3L}} + \frac{1}{{4\pi {\varepsilon _0}}}\frac{{\left( { - q} \right)\left( Q \right)}}{L}$$
As we know that work done in moving a charge is equal to change in potential energy between the points it has been moved.
Work done, $$\Delta U = {U_2} - {U_1}$$
$$\eqalign{
& = \left( { - \frac{1}{{4\pi {\varepsilon _0}}}\frac{{{q^2}}}{{2L}} + \frac{1}{{4\pi {\varepsilon _0}}} \cdot \frac{{qQ}}{{3L}} - \frac{1}{{4\pi {\varepsilon _0}}}\frac{{qQ}}{L}} \right) - \left( { - \frac{1}{{4\pi {\varepsilon _0}}}\frac{{{q^2}}}{{2L}} - \frac{1}{{4\pi {\varepsilon _0}}} \cdot \frac{{qQ}}{L} + \frac{1}{{4\pi {\varepsilon _0}}}\frac{{qQ}}{L}} \right) \cr
& = \frac{{qQ}}{{4\pi {\varepsilon _0}}} \cdot \left( {\frac{1}{{3L}} - \frac{1}{L}} \right) = \frac{{qQ}}{{4\pi {\varepsilon _0}}}\frac{{\left( {1 - 3} \right)}}{{3L}} \cr
& = \frac{{ - 2qQ}}{{12\pi {\varepsilon _0}L}} = - \frac{{qQ}}{{6\pi {\varepsilon _0}L}} \cr} $$