At $$500\,K,$$ equilibrium constant, $${K_c},$$ for the following reaction is 5.
$$\frac{1}{2}{H_{2\left( g \right)}} + \frac{1}{2}{I_{2\left( g \right)}} \rightleftharpoons H{I_{\left( g \right)}}$$
What would be the equilibrium constant $${K_c}$$ for the reaction : $$2H{I_{\left( g \right)}} \rightleftharpoons {H_{2\left( g \right)}} + {I_{2\left( g \right)}}?$$
A.
0.04
B.
0.4
C.
25
D.
2.5
Answer :
0.04
Solution :
$$\eqalign{
& \frac{1}{2}{H_{2\left( g \right)}} + \frac{1}{2}{I_{2\left( g \right)}} \rightleftharpoons H{I_{\left( g \right)}};{K_c} = 5...\left( {\text{i}} \right) \cr
& {\text{Multiply}}\,\,{\text{eqn }}\left( {\text{i}} \right){\text{ by 2,}} \cr
& {{\text{H}}_{2\left( g \right)}} + {I_{2\left( g \right)}} \rightleftharpoons 2H{I_{\left( g \right)}};{K_c} = {\left( 5 \right)^2}...\left( {{\text{ii}}} \right) \cr
& {\text{Now, reverse the reaction}} \cr} $$
$$2H{I_{\left( g \right)}} \rightleftharpoons {H_{2\left( g \right)}} + {I_{2\left( g \right)}};$$ $${K_c} = \frac{1}{{{{\left( 5 \right)}^2}}} = \frac{1}{{25}} = 0.04$$
Releted MCQ Question on Physical Chemistry >> Chemical Equilibrium
Releted Question 1
For the reaction : $${H_2}\left( g \right) + {I_2}\left( g \right) \rightleftharpoons 2HI\left( g \right)$$ the equilibrium constant $${K_p}$$ changes with