Question
At $$298K$$ the standard free energy of formation of $${H_2}O\left( l \right)$$ is $$ - 237.20\,kJ/mol$$ while that of its ionisation into $${H^ + }\,ion$$ and hydroxyl ions is $$80\,kJ/mol,$$ then the emf of the following cell at $$298\,K$$ will be
[ Take Faraday constant $$F = 96500\,C$$ ]
$${H_2}\left( {g,1\,bar} \right)\left| {{H^ + }\left( {1M} \right)} \right|\left| {O{H^ - }\left( {1M} \right)} \right|{O_2}\left( {g,1\,bar} \right)$$
A.
$$0.40\,V$$
B.
$$0.81\,V$$
C.
$$1.23\,V$$
D.
$$ - 0.40\,V$$
Answer :
$$ - 0.40\,V$$
Solution :
$$\eqalign{
& {\text{Cell reaction}} \cr
& {\text{cathode :}}{H_2}O\left( l \right) + \frac{1}{2}{O_2}\left( g \right) + 2{e^ - } \to 2O{H^ - }\left( {aq} \right) \cr
& \underline {{\text{anode :}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{H_2}\left( g \right) \to 2{H^ + }\left( {aq} \right) + 2{e^ - }\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,} \cr
& {H_2}O\left( l \right) + \frac{1}{2}{O_2}\left( g \right) + {H_2}\left( g \right) \to 2{H^ + }\left( {aq} \right) + 2O{H^ - }\left( {aq} \right) \cr
& {\text{Also we have}} \cr
& {H_2}\left( g \right) + \frac{1}{2}{O_2}\left( g \right) \to {H_2}O\left( l \right) \cr
& \Delta G_f^ \circ = - 237.2\,kJ/mol \cr
& {H_2}O\left( l \right) \to {H^ + }\left( {aq} \right) + O{H^ - }\left( {aq} \right); \cr
& \Delta {G^ \circ } = 80\,kJ/mol \cr
& {\text{Hence for cell reaction}} \cr
& \Delta {G^ \circ } = - 237.2 + \left( {2 \times 80} \right) \cr
& = - 77.20\,kJ/mol \cr
& \therefore \,\,{E^ \circ } = - \frac{{\Delta {G^ \circ }}}{{nF}} = - \frac{{77200}}{{2 \times 96500}} = - 0.40\,V \cr} $$