Question

Area of the equilateral triangle inscribed in the circle $${x^2} + {y^2} - 7x + 9y + 5 = 0$$      is :

A. $$\frac{{155}}{8}\sqrt 3 {\text{ square units}}$$
B. $$\frac{{185}}{8}\sqrt 3 {\text{ square units}}$$
C. $$\frac{{175}}{8}\sqrt 3 {\text{ square units}}$$
D. $$\frac{{165}}{8}\sqrt 3 {\text{ square units}}$$  
Answer :   $$\frac{{165}}{8}\sqrt 3 {\text{ square units}}$$
Solution :
Given circle : $${x^2} + {y^2} - 7x + 9y + 5 = 0$$
$$\therefore $$  Centre $$ = \left( {\frac{7}{2},\,\frac{{ - 9}}{2}} \right)$$
Radius $$ = \sqrt {\frac{{49}}{4} + \frac{{81}}{4} - 5} = \frac{{\sqrt {110} }}{2}$$
Circle mcq solution image
Since, $$\Delta ABC$$   is an equilateral
$$\eqalign{ & \therefore \,\angle MAL = {30^ \circ },\,\,\angle MLA = {90^ \circ } \cr & {\text{Also, }}MA = \frac{{\sqrt {110} }}{2} \cr & \therefore \,AL = MA\,\cos \,{30^ \circ } = \frac{{\sqrt {110} }}{2} \times \frac{{\sqrt 3 }}{2} = \frac{{\sqrt {330} }}{4} \cr & \therefore {\text{ side of }}\Delta = 2.AL = \frac{{\sqrt {330} }}{2} \cr} $$
Area of equilateral $$\Delta = \frac{{\sqrt 3 }}{4}{a^2} = \frac{{\sqrt 3 }}{4} \times \frac{{330}}{4} = \frac{{165}}{8}\sqrt 3 {\text{ square units}}$$

Releted MCQ Question on
Geometry >> Circle

Releted Question 1

A square is inscribed in the circle $${x^2} + {y^2} - 2x + 4y + 3 = 0.$$      Its sides are parallel to the coordinate axes. The one vertex of the square is-

A. $$\left( {1 + \sqrt 2 ,\, - 2 } \right)$$
B. $$\left( {1 - \sqrt 2 ,\, - 2 } \right)$$
C. $$\left( {1 - 2 ,\, + \sqrt 2 } \right)$$
D. none of these
Releted Question 2

Two circles $${x^2} + {y^2} = 6$$    and $${x^2} + {y^2} - 6x + 8 = 0$$     are given. Then the equation of the circle through their points of intersection and the point $$\left( {1,\,1} \right)$$  is-

A. $${x^2} + {y^2} - 6x + 4 = 0$$
B. $${x^2} + {y^2} - 3x + 1 = 0$$
C. $${x^2} + {y^2} - 4y + 2 = 0$$
D. none of these
Releted Question 3

The centre of the circle passing through the point (0, 1) and touching the curve $$y = {x^2}$$   at $$\left( {2,\,4} \right)$$  is-

A. $$\left( {\frac{{ - 16}}{5},\,\frac{{27}}{{10}}} \right)$$
B. $$\left( {\frac{{ - 16}}{7},\,\frac{{53}}{{10}}} \right)$$
C. $$\left( {\frac{{ - 16}}{5},\,\frac{{53}}{{10}}} \right)$$
D. none of these
Releted Question 4

The equation of the circle passing through $$\left( {1,\,1} \right)$$  and the points of intersection of $${x^2} + {y^2} + 13x - 3y = 0$$      and $$2{x^2} + 2{y^2} + 4x - 7y - 25 = 0$$      is-

A. $$4{x^2} + 4{y^2} - 30x - 10y - 25 = 0$$
B. $$4{x^2} + 4{y^2} + 30x - 13y - 25 = 0$$
C. $$4{x^2} + 4{y^2} - 17x - 10y + 25 = 0$$
D. none of these

Practice More Releted MCQ Question on
Circle


Practice More MCQ Question on Maths Section