Solution :
From $$KVL$$ at any time $$t$$

$$\eqalign{
& \frac{q}{c} - iR - L\frac{{di}}{{dt}} = 0 \cr
& i = - \frac{{dq}}{{dt}} \Rightarrow \frac{q}{c} + \frac{{dq}}{{dt}}R + \frac{{L{d^2}q}}{{d{t^2}}} = 0 \cr
& \frac{{{d^2}q}}{{d{t^2}}} + \frac{R}{L}\frac{{dq}}{{dt}} + \frac{q}{{Lc}} = 0 \cr} $$
From damped harmonic oscillator, the amplitude is given by $$A = {A_0}e - \frac{{dt}}{{2m}}$$
Double differential equation $$\frac{{{d^2}x}}{{d{t^2}}} + \frac{b}{m}\frac{{dx}}{{dt}} + \frac{k}{m}x = 0$$
$${Q_{\max }} = {Q_o}e - \frac{{Rt}}{{2L}} \Rightarrow Q_{\max }^2 = Q_o^2e - \frac{{Rt}}{L}$$
Hence damping will be faster for lesser self inductance.