Solution :
Given that, the rod is of uniform mass density and $$AB=BC$$

Let mass of one rod is $$m.$$
Balancing torque about hinge point.
$$\eqalign{
& mg\left( {{C_1}P} \right) = mg\left( {{C_2}N} \right) \cr
& mg\left( {\frac{L}{2}\sin \,\theta } \right) = mg\left( {\frac{L}{2}cos\,\theta - L\,\sin \,\theta } \right) \cr
& \Rightarrow \frac{3}{2}mgL\,\sin \,\theta = \frac{{mgL}}{2}\cos \,\theta \cr
& \Rightarrow \frac{{\sin \,\theta }}{{\cos \,\theta }} = \frac{1}{3}\,\,\,\,or,\tan \,\theta = \frac{1}{3} \cr} $$