Question
An automobile travelling with a speed of $$60 \,km/h,$$ can brake to stop within a distance of $$20 \,m.$$ If the car is going twice as fast i.e., $$120 \,km/h,$$ the stopping distance will be-
A.
$$60 \,m$$
B.
$$40 \,m$$
C.
$$20 \,m$$
D.
$$80 \,m$$
Answer :
$$80 \,m$$
Solution :
$$\eqalign{
& {\text{Speed,}}\,\,u = 60 \times \frac{5}{{18}}\,m/s = \frac{{50}}{3}\,m/s \cr
& d = 20\,m,\,\,u' = 120 \times \frac{5}{{18}} = \frac{{100}}{3}\,m/s \cr
& {\text{Let declearation be a then }}{\left( 0 \right)^2} - {u^2} = - 2ad \cr
& {\text{or, }}{\left( 0 \right)^2} - {u^2} = - 2ad\,\,\,\,{\text{or}},\,\,{u^2} = 2ad\,.....(1) \cr
& {\text{and }}{\left( 0 \right)^2} - u{'^2} = - 2ad'\,\,\,\,\,{\text{or}},\,\,u{'^2} = 2ad'.....\left( 2 \right) \cr
& (2)\;{\text{divided }}(1)\,{\text{gives,}} \cr
& 4 = \frac{{d'}}{d} \Rightarrow d' = 4 \times 20 = 80\,m \cr} $$