Question

$$ABC$$  is a triangle where $$A = \left( {2,\,3,\,5} \right),\,B = \left( { - 1,\,3,\,2} \right)$$      and $$C = \left( {\lambda ,\,5,\,\mu } \right).$$   If the median through $$A$$ is equally inclined with the axes then :

A. $$\lambda = 14,\,\mu = 20$$
B. $$\lambda = 7,\,\mu = 10$$  
C. $$\lambda = \frac{7}{2},\,\mu = 5$$
D. $$\lambda = 10,\,\mu = 7$$
Answer :   $$\lambda = 7,\,\mu = 10$$
Solution :
Centroid $$G = \left( {\frac{{2 - 1 + \lambda }}{3},\,\frac{{3 + 3 + 5}}{3},\,\frac{{5 + 2 + \mu }}{3}} \right).$$
Direction ratios of $$AG$$  are $$2 - \frac{{1 + \lambda }}{3},\,3 - \frac{{11}}{3},\,5 - \frac{{7 + \mu }}{3},{\text{ i}}{\text{.e}}{\text{., }}\frac{{5 - \lambda }}{3},\,\frac{{ - 2}}{3},\,\frac{{8 - \mu }}{3}.$$
As $$AG$$  is equally inclined with the axes, the direction ratios are $$1,\,1,\,1$$   also.
$$\therefore \frac{{\frac{{5 - \lambda }}{3}}}{1} = \frac{{\frac{{ - 2}}{3}}}{1} = \frac{{\frac{{8 - \mu }}{3}}}{1} \Rightarrow 5 - \lambda = - 2 = 8 - \mu $$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section