Question

$$AB$$  is a vertical pole with $$B$$ at the ground level and $$A$$ at the top. A man finds that the angle of elevation of the point $$A$$ from a certain point $$C$$ on the ground is 60°. He moves away from the pole along the line $$BC$$  to a point $$D$$ such that $$CD = 7 m.$$   From $$D$$ the angle of elevation of the point $$A$$ is 45°. Then the height of the pole is

A. $$\frac{{7\sqrt 3 }}{2}\frac{1}{{\sqrt 3 - 1}}m$$
B. $$\frac{{7\sqrt 3 }}{2}\left( {\sqrt 3 + 1} \right)m$$  
C. $$\frac{{7\sqrt 3 }}{2}\left( {\sqrt 3 - 1} \right)m$$
D. $$\frac{{7\sqrt 3 }}{2}\frac{1}{{\sqrt 3 + 1}}m$$
Answer :   $$\frac{{7\sqrt 3 }}{2}\left( {\sqrt 3 + 1} \right)m$$
Solution :
Properties and Solutons of Triangle mcq solution image
$$\eqalign{ & {\text{In }}\Delta \,ABC \cr & \frac{h}{x} = \tan {60^ \circ } = \sqrt 3 \cr & \Rightarrow \,\,x = \frac{h}{{\sqrt 3 }} \cr & {\text{In }}\Delta \,ABD\frac{h}{{x + 7}} \cr & = \tan {45^ \circ } = 1 \cr & \Rightarrow \,\,h = x + 7 \cr & \Rightarrow \,\,h - \frac{h}{{\sqrt 3 }} = 7 \cr & \Rightarrow \,\,h = \frac{{7\sqrt 3 }}{{\sqrt 3 - 1}} \times \frac{{\sqrt 3 + 1}}{{\sqrt 3 + 1}} \cr & \Rightarrow \,\,h = \frac{{7\sqrt 3 }}{2}\left( {\sqrt 3 + 1} \right)m \cr} $$

Releted MCQ Question on
Trigonometry >> Properties and Solutons of Triangle

Releted Question 1

If the bisector of the angle $$P$$ of a triangle $$PQR$$  meets $$QR$$  in $$S,$$ then

A. $$QS = SR$$
B. $$QS : SR = PR : PQ$$
C. $$QS : SR = PQ : PR$$
D. None of these
Releted Question 2

From the top of a light-house 60 metres high with its base at the sea-level, the angle of depression of a boat is 15°. The distance of the boat from the foot of the light house is

A. $$\left( {\frac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}} \right)60\,{\text{metres}}$$
B. $$\left( {\frac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}}} \right)60\,{\text{metres}}$$
C. $${\left( {\frac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}}} \right)^2}{\text{metres}}$$
D. none of these
Releted Question 3

In a triangle $$ABC,$$  angle $$A$$ is greater than angle $$B.$$ If the measures of angles $$A$$ and $$B$$ satisfy the equation $$3\sin x - 4{\sin ^3}x - k = 0, 0 < k < 1,$$       then the measure of angle $$C$$ is

A. $$\frac{\pi }{3}$$
B. $$\frac{\pi }{2}$$
C. $$\frac{2\pi }{3}$$
D. $$\frac{5\pi }{6}$$
Releted Question 4

In a triangle $$ABC,$$  $$\angle B = \frac{\pi }{3}{\text{ and }}\angle C = \frac{\pi }{4}.$$     Let $$D$$ divide $$BC$$  internally in the ratio 1 : 3 then $$\frac{{\sin \angle BAD}}{{\sin \angle CAD}}$$   is equal to

A. $$\frac{1}{{\sqrt 6 }}$$
B. $${\frac{1}{3}}$$
C. $$\frac{1}{{\sqrt 3 }}$$
D. $$\sqrt {\frac{2}{3}} $$

Practice More Releted MCQ Question on
Properties and Solutons of Triangle


Practice More MCQ Question on Maths Section