Question

A variable plane passes through a fixed point $$\left( {1,\,2,\,3} \right).$$   The locus of the foot of the perpendicular from the origin to this plane is given by :

A. $${x^2} + {y^2} + {z^2} - 14 = 0$$
B. $${x^2} + {y^2} + {z^2} + x + 2y + 3z = 0$$
C. $${x^2} + {y^2} + {z^2} - x - 2y - 3z = 0$$  
D. None of these
Answer :   $${x^2} + {y^2} + {z^2} - x - 2y - 3z = 0$$
Solution :
Let $$P\left( {\alpha ,\,\beta ,\,\gamma } \right)$$   be the foot of the perpendicular from the origin $$O\left( {0,\,0,\,0} \right)$$   to the plane So, the plane passes through $$P\left( {\alpha ,\,\beta ,\,\gamma } \right)$$   and is perpendicular to $$OP.$$  Clearly direction ratios of $$OP$$  i.e., normal to the plane are $${\alpha ,\,\beta ,\,\gamma }.$$   Therefore, equation of the plane is
$$\alpha \left( {x - \alpha } \right) + \beta \left( {y - \beta } \right) + \gamma \left( {z - \gamma } \right) = 0$$
This plane passes through the fixed point $$\left( {1,\,2,\,3} \right),$$   so
$$\eqalign{ & \alpha \left( {1 - \alpha } \right) + \beta \left( {2 - \beta } \right) + \gamma \left( {3 - \gamma } \right) = 0 \cr & {\text{or, }}{\alpha ^2} + {\beta ^2} + {\gamma ^2} - \alpha - 2\beta - 3\gamma = 0 \cr} $$
Generalizing $${\alpha ,\,\beta }$$  and $$\gamma $$, locus of $$P\left( {\alpha ,\,\beta ,\,\gamma } \right)$$   is
$${x^2} + {y^2} + {z^2} - x - 2y - 3z = 0$$

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section