Question

A variable plane at a distance of the one unit from the origin cuts the coordinates axes at $$A,\,B$$  and $$C.$$  If the centroid $$D\left( {x,\,y,\,z} \right)$$   of triangle $$ABC$$  satisfies the relation $$\frac{1}{{{x^2}}} + \frac{1}{{{y^2}}} + \frac{1}{{{z^2}}} = k,$$     then the value of $$k$$ is :

A. $$3$$
B. $$1$$
C. $$\frac{1}{3}$$
D. $$9$$  
Answer :   $$9$$
Solution :
Let the equation of variable plane be $$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$    which meets the axes at $$A\left( {a,\,0,\,0} \right),\,B\left( {0,\,b,\,0} \right)$$     and $$C\left( {0,\,0,\,c} \right).$$
$$\therefore $$ Centroid of $$\Delta ABC$$   is $$\left( {\frac{a}{3},\,\frac{b}{3},\,\frac{c}{3}} \right)$$
and it satisfies the relation
$$\eqalign{ & \frac{1}{{{x^2}}} + \frac{1}{{{y^2}}} + \frac{1}{{{z^2}}} = k \cr & \Rightarrow \frac{9}{{{a^2}}} + \frac{9}{{{b^2}}} + \frac{9}{{{c^2}}} = k \cr & \Rightarrow \frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}} = \frac{k}{9}.....(1) \cr} $$
Also given that the distance of plane $$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$    from (0, 0, 0) is 1 unit.
$$\eqalign{ & \Rightarrow \frac{1}{{\sqrt {\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}}} }} = 1 \cr & \Rightarrow \frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}} = 1.....(2) \cr} $$
From (1) and (2), we get $$\frac{k}{9} = 1\,\,\,\,\,i.e.,\,\,k = 9$$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section