Question

A value of $$\theta $$ for which $$\frac{{2 + 3i\sin \theta }}{{1 - 2i\sin \theta }}$$   is purely imaginary, is:

A. $${\sin ^{ - 1}}\left( {\frac{{\sqrt 3 }}{4}} \right)$$
B. $${\sin ^{ - 1}}\left( {\frac{1}{{\sqrt 3 }}} \right)$$  
C. $$\frac{\pi }{3}$$
D. $$\frac{\pi }{6}$$
Answer :   $${\sin ^{ - 1}}\left( {\frac{1}{{\sqrt 3 }}} \right)$$
Solution :
Rationalizing the given expression
$$\frac{{\left( {2 + 3i\sin \theta } \right)\left( {1 + 2i\sin \theta } \right)}}{{1 + 4{{\sin }^2}\theta }}$$
For the given expression to be purely imaginary, real part of the above expression should be equal to zero.
$$\eqalign{ & \Rightarrow \,\,\frac{{2 - 6{{\sin }^2}\theta }}{{1 + 4{{\sin }^2}\theta }} = 0 \cr & \Rightarrow \,\,{\sin ^2}\theta = \frac{1}{3} \cr & \Rightarrow \,\,\sin \theta = \pm \frac{1}{{\sqrt 3 }} \cr} $$

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section