Solution :
We know that velocity in string is given by
$$v = \sqrt {\frac{T}{\mu }} \,\,.....\left( {\text{I}} \right)$$
where, $$\mu = \frac{m}{l} = \frac{{{\text{mass of string}}}}{{{\text{length of string}}}}$$
The tension, $$T = \frac{m}{\ell } \times x \times g\,\,\,.....\left( {{\text{II}}} \right)$$

From (I) and (II)
$$\eqalign{
& \frac{{dx}}{{dt}} = \sqrt {gx} \cr
& {x^{ - \frac{1}{2}}}dx = \sqrt g dt \cr
& \therefore \,\,\int\limits_0^\ell {{x^{ - \frac{1}{2}}}dx - \sqrt g \int\limits_0^\ell {dt} } \cr
& 2\sqrt l = \,\sqrt g \times t \cr
& \therefore \,\,t = 2\sqrt {\frac{\ell }{g}} \cr
& = 2\sqrt {\frac{{20}}{{10}}} \cr
& = 2\sqrt 2 \cr} $$