Question

A triangle is formed by the lines whose combined equation is given by $$\left( {x + y - 4} \right)\left( {xy - 2x - y + 2} \right) = 0.$$       The equation of its circumcircle is :

A. $${x^2} + {y^2} - 5x - 3y + 8 = 0$$
B. $${x^2} + {y^2} - 3x - 5y + 8 = 0$$  
C. $${x^2} + {y^2} - 3x - 5y - 8 = 0$$
D. none of these
Answer :   $${x^2} + {y^2} - 3x - 5y + 8 = 0$$
Solution :
Given combined equation is
$$\eqalign{ & \left( {x + y - 4} \right)\left( {xy - 2x - y + 2} \right) = 0 \cr & \Rightarrow \left( {x + y - 4} \right)\left( {x - 1} \right)\left( {y - 2} \right) = 0 \cr} $$
So, the equation of sides of the triangle are $$x = 1,\,y = 2,\,x + y = 4$$
Point of intersection of any two sides of a triangle will give the vertices of triangle.
So, the vertices of the triangle are $$A\left( {1,\,3} \right),\,B\left( {1,\,2} \right),\,C\left( {2,\,2} \right)$$
Slope of $$AC = \frac{{2 - 3}}{{2 - 1}} = - 1$$
So, slope of its perpendicular bisector is 1.
Mid-point of $$AC$$  is $$\left( {\frac{3}{2},\,\frac{5}{2}} \right)$$
So, equation of perpendicular bisector of $$AC$$  is
$$\eqalign{ & y - \frac{5}{2} = \left( {x - \frac{3}{2}} \right) \cr & \Rightarrow 2y - 2x = 2 \cr & \Rightarrow y - x = 1......\left( 1 \right) \cr} $$
Clearly, $$AB$$  makes an angle of $${90^ \circ }$$  with $$x$$-axis.
So, slope of perpendicular bisector of $$AB$$  is 0.
Mid-point of $$AB$$  is $$\left( {1,\,\frac{5}{2}} \right)$$
So, equation of perpendicular bisector of $$AB$$  is
$$y - \frac{5}{2} = 0......\left( 2 \right)$$
Solving equation (1) and (2), we get
$$x = \frac{3}{2},\,y = \frac{5}{2}$$
So, the coordinates of circumcenter is $$O\left( {\frac{3}{2},\,\frac{5}{2}} \right)$$
Radius $$ = OA = \frac{1}{{\sqrt 2 }}$$
Equation of circumcircle is
$$\eqalign{ & {\left( {x - \frac{3}{2}} \right)^2} + {\left( {y - \frac{5}{2}} \right)^2} = \frac{1}{2} \cr & \Rightarrow 4{x^2} + 9 - 12x + 4{y^2} + 25 - 20y = 2 \cr & \Rightarrow {x^2} + {y^2} - 3x - 5y + 8 = 0 \cr} $$

Releted MCQ Question on
Geometry >> Circle

Releted Question 1

A square is inscribed in the circle $${x^2} + {y^2} - 2x + 4y + 3 = 0.$$      Its sides are parallel to the coordinate axes. The one vertex of the square is-

A. $$\left( {1 + \sqrt 2 ,\, - 2 } \right)$$
B. $$\left( {1 - \sqrt 2 ,\, - 2 } \right)$$
C. $$\left( {1 - 2 ,\, + \sqrt 2 } \right)$$
D. none of these
Releted Question 2

Two circles $${x^2} + {y^2} = 6$$    and $${x^2} + {y^2} - 6x + 8 = 0$$     are given. Then the equation of the circle through their points of intersection and the point $$\left( {1,\,1} \right)$$  is-

A. $${x^2} + {y^2} - 6x + 4 = 0$$
B. $${x^2} + {y^2} - 3x + 1 = 0$$
C. $${x^2} + {y^2} - 4y + 2 = 0$$
D. none of these
Releted Question 3

The centre of the circle passing through the point (0, 1) and touching the curve $$y = {x^2}$$   at $$\left( {2,\,4} \right)$$  is-

A. $$\left( {\frac{{ - 16}}{5},\,\frac{{27}}{{10}}} \right)$$
B. $$\left( {\frac{{ - 16}}{7},\,\frac{{53}}{{10}}} \right)$$
C. $$\left( {\frac{{ - 16}}{5},\,\frac{{53}}{{10}}} \right)$$
D. none of these
Releted Question 4

The equation of the circle passing through $$\left( {1,\,1} \right)$$  and the points of intersection of $${x^2} + {y^2} + 13x - 3y = 0$$      and $$2{x^2} + 2{y^2} + 4x - 7y - 25 = 0$$      is-

A. $$4{x^2} + 4{y^2} - 30x - 10y - 25 = 0$$
B. $$4{x^2} + 4{y^2} + 30x - 13y - 25 = 0$$
C. $$4{x^2} + 4{y^2} - 17x - 10y + 25 = 0$$
D. none of these

Practice More Releted MCQ Question on
Circle


Practice More MCQ Question on Maths Section