Question

A triangle has two of its vertices at $$P\left( {a,\,0} \right),\,Q\left( {0,\,b} \right)$$    and the third vertex $$R\left( {x,\,y} \right)$$   is moving along the straight line $$y = x.$$  If $$A$$ be the area of the triangle, then $$\frac{{dA}}{{dx}}$$  is equal to :

A. $$\frac{{a - b}}{2}$$
B. $$\frac{{a - b}}{4}$$
C. $$ - \left( {\frac{{a + b}}{2}} \right)$$  
D. $$\frac{{a + b}}{4}$$
Answer :   $$ - \left( {\frac{{a + b}}{2}} \right)$$
Solution :
Limits mcq solution image
$$\eqalign{ & {\text{Area of }}\Delta PQR = A \cr & = \frac{{ - 1}}{2}\left[ {x\left( {b - 0} \right) + 0\left( {0 - y} \right) + a\left( {y - b} \right)} \right] \cr & = \frac{{ - 1}}{2}\left( {bx + ax - ab} \right) \cr & \therefore \,\frac{{dA}}{{dx}} = \frac{{ - 1}}{2}\left( {a + b} \right) \cr} $$

Releted MCQ Question on
Calculus >> Limits

Releted Question 1

lf $$f\left( x \right) = \sqrt {\frac{{x - \sin \,x}}{{x + {{\cos }^2}x}}} ,$$     then $$\mathop {\lim }\limits_{x\, \to \,\infty } f\left( x \right)$$    is-

A. $$0$$
B. $$\infty $$
C. $$1$$
D. none of these
Releted Question 2

If $$G\left( x \right) = - \sqrt {25 - {x^2}} $$     then $$\mathop {\lim }\limits_{x\, \to \,{\text{I}}} \frac{{G\left( x \right) - G\left( I \right)}}{{x - 1}}$$     has the value-

A. $$\frac{1}{{24}}$$
B. $$\frac{1}{{5}}$$
C. $$ - \sqrt {24} $$
D. none of these
Releted Question 3

$$\mathop {\lim }\limits_{n\, \to \,\infty } \left\{ {\frac{1}{{1 - {n^2}}} + \frac{2}{{1 - {n^2}}} + ..... + \frac{n}{{1 - {n^2}}}} \right\}$$        is equal to-

A. $$0$$
B. $$ - \frac{1}{2}$$
C. $$ \frac{1}{2}$$
D. none of these
Releted Question 4

If $$\eqalign{ & f\left( x \right) = \frac{{\sin \left[ x \right]}}{{\left[ x \right]}},\,\,\left[ x \right] \ne 0 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\, = 0,\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ x \right] = 0 \cr} $$
Where \[\left[ x \right]\] denotes the greatest integer less than or equal to $$x.$$ then $$\mathop {\lim }\limits_{x\, \to \,0} f\left( x \right)$$   equals

A. $$1$$
B. $$0$$
C. $$ - 1$$
D. none of these

Practice More Releted MCQ Question on
Limits


Practice More MCQ Question on Maths Section