A triangle has two of its vertices at $$P\left( {a,\,0} \right),\,Q\left( {0,\,b} \right)$$ and the third vertex $$R\left( {x,\,y} \right)$$ is moving along the straight line $$y = x.$$ If $$A$$ be the area of the triangle, then $$\frac{{dA}}{{dx}}$$ is equal to :
If $$G\left( x \right) = - \sqrt {25 - {x^2}} $$ then $$\mathop {\lim }\limits_{x\, \to \,{\text{I}}} \frac{{G\left( x \right) - G\left( I \right)}}{{x - 1}}$$ has the value-
If $$\eqalign{
& f\left( x \right) = \frac{{\sin \left[ x \right]}}{{\left[ x \right]}},\,\,\left[ x \right] \ne 0 \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\, = 0,\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ x \right] = 0 \cr} $$
Where \[\left[ x \right]\] denotes the greatest integer less than or equal to $$x.$$ then $$\mathop {\lim }\limits_{x\, \to \,0} f\left( x \right)$$ equals