Solution :
Let $$V$$ be the volume of the material of which the cylinder is made. The cylinder is half immersed in water. Therefore the volume of water displaced because of the material of the cylinder is $$\frac{V}{2}.$$ Let $$h$$ be the total height of the cylinder. As the cylinder is half submerged therefore buoyant force
$$B = \frac{{V{\rho _\omega }g}}{2} + \frac{{hA{\rho _\omega }g}}{2}$$
where $$A$$ is the area of cross-section of the cylinder
The weight of the cylinder $$W = V{\rho _c}g$$
The weight of the water inside the cylinder $$ = h'A{\rho _\omega }g$$
For equilibrium,
$$\frac{{V{\rho _\omega }g}}{2} + \frac{{Ah{\rho _\omega }g}}{2} = V{\rho _c}g + = h'A{\rho _\omega }g$$
Here $${\rho _\omega } = 1$$
$$\eqalign{
& \therefore h' = \frac{h}{2} + \frac{V}{{2A}}\,\,\left[ {1 - 2{\rho _c}} \right] \cr
& {\text{If }}{\rho _c} < 0.5\,\,{\text{then }}h' > \frac{h}{2} \cr
& {\text{and if }}{\rho _c} > 0.5\,\,{\text{then }}h' < \frac{h}{2} \cr
& {\text{if }}{\rho _c} = 0,\,\,{\text{ }}h' = \frac{h}{2} \cr} $$