Question

A tangent to the parabola $${y^2} = 8x,$$   which makes an angle of $${45^ \circ }$$  with the straight line $$y = 3x + 5$$   is :

A. $$2x - y + 1 = 0$$
B. $$2x + y + 1 = 0$$
C. $$x - 2y + 8 = 0$$
D. Both (B) and (C)  
Answer :   Both (B) and (C)
Solution :
We know the tangent to the parabola $${y^2} = 4ax$$   at $$\left( {a{t^2},\,2at} \right)$$   is $$ty = x + a{t^2}.$$
Here $$a = 2$$
So, the tangent at $$\left( {2{t^2},\,4t} \right)$$   to the parabola
$${y^2} = 8x$$   is $$ty = x + 2{t^2}......\left( {\text{i}} \right)$$
$$'m'$$ of $$\left( {\text{i}} \right)$$ is $$\frac{1}{t};\left( {\text{i}} \right)$$  makes $${45^ \circ }$$  with $$y = 3x + 5$$   if
$$\eqalign{ & \tan \,{45^ \circ } = \left| {\frac{{\frac{1}{t} - 3}}{{1 + \frac{1}{t}.3}}} \right| = \left| {\frac{{1 - 3t}}{{t + 3}}} \right| \cr & \therefore \,1 = \left| {\frac{{1 - 3t}}{{t + 3}}} \right|{\text{; or }}\frac{{1 - 3t}}{{t + 3}} = \pm 1\,;{\text{ or }}1 - 3t = t + 3,\, - t - 3 \cr & \therefore \,4t = - 2{\text{ or }}2t = 4 \cr & \therefore \,t = - \frac{1}{2}{\text{ or }}2 \cr} $$
Putting in $$\left( {\text{i}} \right),$$ the tangents have the equations
$$\eqalign{ & - \frac{1}{2}y = x + 2.\frac{1}{4}{\text{ i}}{\text{.e}}{\text{., }}2x + y + 1 = 0 \cr & {\text{and }}2y = x + 2.4{\text{ i}}{\text{.e}}{\text{., }}x - 2y + 8 = 0 \cr} $$

Releted MCQ Question on
Geometry >> Parabola

Releted Question 1

Consider a circle with its centre lying on the focus of the parabola $${y^2} = 2px$$   such that it touches the directrix of the parabola. Then a point of intersection of the circle and parabola is-

A. $$\left( {\frac{p}{2},\,p} \right){\text{ or }}\left( {\frac{p}{2},\, - p} \right)$$
B. $$\left( {\frac{p}{2},\, - \frac{p}{2}} \right)$$
C. $$\left( { - \frac{p}{2},\,p} \right)$$
D. $$\left( { - \frac{p}{2},\, - \frac{p}{2}} \right)$$
Releted Question 2

The curve described parametrically by $$x = {t^2} + t + 1,\,\,y = {t^2} - t + 1$$      represents-

A. a pair of straight lines
B. an ellipse
C. a parabola
D. a hyperbola
Releted Question 3

If $$x+y=k$$   is normal to $${y^2} = 12x,$$   then $$k$$ is-

A. $$3$$
B. $$9$$
C. $$ - 9$$
D. $$ - 3$$
Releted Question 4

If the line $$x-1=0$$   is the directrix of the parabola $${y^2} - kx + 8 = 0,$$    then one of the values of $$k$$ is-

A. $$\frac{1}{8}$$
B. $$8$$
C. $$4$$
D. $$\frac{1}{4}$$

Practice More Releted MCQ Question on
Parabola


Practice More MCQ Question on Maths Section