Question
A step-up transformer operates on a $$230\,V$$ line and supplies current of $$2\,A$$ to a load. The ratio of the primary and secondary windings is $$1:25.$$ The current in the primary coil is
A.
$$15\,A$$
B.
$$50\,A$$
C.
$$25\,A$$
D.
$$12.5\,A$$
Answer :
$$50\,A$$
Solution :
As change in flux of primary and secondary coil is proportional to the no. of turns in primary and secondary coil respectively.
$$\eqalign{
& {\text{So,}}\,\,\frac{{{\phi _p}}}{{{N_p}}} = \frac{{{\phi _s}}}{{{N_s}}} \cr
& {\text{or}}\,\,\frac{1}{{{N_p}}} \cdot \frac{{d{\phi _p}}}{{dt}} = \frac{1}{{{N_s}}}\frac{{d{\phi _s}}}{{dt}} \cr
& \therefore \frac{{{V_s}}}{{{V_p}}} = \frac{{{N_s}}}{{{N_p}}}\,\,\left( {{\text{as}}\,\,V \propto \frac{{d\phi }}{{dt}}} \right) \cr} $$
For no loss of power,
$$\eqalign{
& Vi = {\text{constant}} \cr
& \therefore i = \frac{1}{V} \times {\text{constant}} \cr
& {\text{or}}\,\,\frac{{{i_p}}}{{{i_s}}} = \frac{{{V_s}}}{{{V_p}}}\,\,{\text{or}}\,\,\frac{{{i_p}}}{{{i_s}}} = \frac{{{N_s}}}{{{N_p}}} \cr} $$
$${{i_p}}$$ and $${{i_s}}$$ are currents in primary and secondary coils
$$\eqalign{
& {\text{Here,}}\,\,\frac{{{N_p}}}{{{N_s}}} = \frac{1}{{25}} \cr
& {i_s} = 2\,A \cr
& \therefore \frac{{{i_p}}}{2} = \frac{{25}}{1} \cr
& {\text{or}}\,\,{i_p} = 25 \times 2 = 50\,A \cr} $$