A standard hydrogen electrode has a zero potential because
A.
hydrogen can be most easily oxidised
B.
hydrogen has only one electron
C.
the electrode potential is assumed to be zero
D.
hydrogen is the lightest element
Answer :
the electrode potential is assumed to be zero
Solution :
According to convention, the standard hydrogen electrode is assigned a zero potential at all temperatures.
Releted MCQ Question on Physical Chemistry >> Electrochemistry
Releted Question 1
The standard reduction potentials at $$298 K$$ for the following half reactions are given against each
$$\eqalign{
& Z{n^{2 + }}\left( {aq} \right) + 2e \rightleftharpoons Zn\left( s \right)\,\,\,\,\,\,\,\,\, - 0.762 \cr
& C{r^{3 + }}\left( {aq} \right) + 2e \rightleftharpoons Cr\left( s \right)\,\,\,\,\,\,\,\,\, - 0.740 \cr
& 2{H^ + }\left( {aq} \right) + 2e \rightleftharpoons {H_2}\left( g \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,0.000 \cr
& F{e^{3 + }}\left( {aq} \right) + 2e \rightleftharpoons F{e^{2 + }}\left( {aq} \right)\,\,\,\,\,\,\,\,0.770 \cr} $$
which is the strongest reducing agent ?
A solution containing one mole per litre of each $$Cu{\left( {N{O_3}} \right)_2};AgN{O_3};H{g_2}{\left( {N{O_3}} \right)_2};$$ is being electrolysed by using inert electrodes. The values of standard electrode potentials in volts (reduction potentials) are :
$$\eqalign{
& Ag/A{g^ + } = + 0.80,\,\,2Hg/H{g_2}^{ + + } = + 0.79 \cr
& Cu/C{u^{ + + }} = + 0.34,\,Mg/M{g^{ + + }} = - 2.37 \cr} $$
With increasing voltage, the sequence of deposition of metals on the cathode will be :