Question

A square of side a lies above the $$x$$-axis and has one vertex at the origin. The side passing through the origin makes an angle $$\alpha \left( {0 < \alpha < \frac{\pi }{4}} \right)$$    with the positive direction of $$x$$-axis. The equation of its diagonal not passing through the origin is-

A. $$y\left( {\cos \,\alpha + \sin \,\alpha } \right) + x\left( {\cos \,\alpha - \sin \,\alpha } \right) = a$$  
B. $$y\left( {\cos \,\alpha - \sin \,\alpha } \right) - x\left( {\sin \,\alpha - \cos \,\alpha } \right) = a$$
C. $$y\left( {\cos \,\alpha + \sin \,\alpha } \right) + x\left( {\sin \,\alpha - \cos \,\alpha } \right) = a$$
D. $$y\left( {\cos \,\alpha + \sin \,\alpha } \right) + x\left( {\sin \,\alpha + \cos \,\alpha } \right) = a$$
Answer :   $$y\left( {\cos \,\alpha + \sin \,\alpha } \right) + x\left( {\cos \,\alpha - \sin \,\alpha } \right) = a$$
Solution :
Co-ordinates of $$A = \left( {a\,\cos \,\alpha ,\,a\,\sin \,\alpha } \right)$$
Straight Lines mcq solution image
Equation of OB,
$$\eqalign{ & y = \tan \left( {\frac{\pi }{4} + \alpha } \right)x \cr & {\text{CA}}{ \bot ^{\text{r}}}{\text{OB}} \cr & \therefore \,{\text{slope of CA }} = - \cot \left( {\frac{\pi }{4} + \alpha } \right) \cr} $$
Equation of CA
$$\eqalign{ & y - a\,\sin \,\alpha = - \cot \left( {\frac{\pi }{4} + \alpha } \right)\left( {x - a\,\cos \,\alpha } \right) \cr & \Rightarrow \left( {y - a\,\sin \,\alpha } \right)\left( {\tan \left( {\frac{\pi }{4} + \alpha } \right)} \right) = \left( {a\,\cos \,\alpha - x} \right) \cr & \Rightarrow \left( {y - a\,\sin \,\alpha } \right)\left( {\frac{{\tan \frac{\pi }{4} + \tan \,\alpha }}{{1 - \tan \frac{\pi }{4}\tan \,\alpha }}} \right) = \left( {a\,\cos \,\alpha - x} \right) \cr & \Rightarrow \left( {y - a\,\sin \,\alpha } \right)\left( {1 + \tan \,\alpha } \right) = \left( {a\,\cos \,\alpha - x} \right)\left( {1 - \tan \,\alpha } \right) \cr & \Rightarrow \left( {y - a\,\sin \,\alpha } \right)\left( {\cos \,\alpha + \,\sin \,\alpha } \right) = \left( {a\,\cos \,\alpha - x} \right)\left( {\cos \,\alpha - \sin \,\alpha } \right) \cr & \Rightarrow y\left( {\cos \,\alpha + \sin \,\alpha } \right) - a\,\sin \,\alpha \,\cos \,\alpha - a\,{\sin ^2}\alpha = a\,{\cos ^2}\alpha - a\,\cos \,\alpha \,\sin \,\alpha - x\,\left( {\cos \,\alpha - a\,\sin \,\alpha } \right) \cr & \Rightarrow y\left( {\cos \,\alpha + \,\sin \,\alpha } \right) + x\left( {\cos \,\alpha - \,\sin \,\alpha } \right) = a \cr & y\left( {\,\sin \,\alpha + \,\cos \,\alpha } \right) + x\left( {\cos \,\alpha - \,\sin \,\alpha } \right) = a \cr} $$

Releted MCQ Question on
Geometry >> Straight Lines

Releted Question 1

The points $$\left( { - a, - b} \right),\left( {0,\,0} \right),\left( {a,\,b} \right)$$     and $$\left( {{a^2},\,ab} \right)$$  are :

A. Collinear
B. Vertices of a parallelogram
C. Vertices of a rectangle
D. None of these
Releted Question 2

The point (4, 1) undergoes the following three transformations successively.
(i) Reflection about the line $$y =x.$$
(ii) Translation through a distance 2 units along the positive direction of $$x$$-axis.
(iii) Rotation through an angle $$\frac{p}{4}$$ about the origin in the counter clockwise direction.
Then the final position of the point is given by the coordinates.

A. $$\left( {\frac{1}{{\sqrt 2 }},\,\frac{7}{{\sqrt 2 }}} \right)$$
B. $$\left( { - \sqrt 2 ,\,7\sqrt 2 } \right)$$
C. $$\left( { - \frac{1}{{\sqrt 2 }},\,\frac{7}{{\sqrt 2 }}} \right)$$
D. $$\left( {\sqrt 2 ,\,7\sqrt 2 } \right)$$
Releted Question 3

The straight lines $$x + y= 0, \,3x + y-4=0,\,x+ 3y-4=0$$         form a triangle which is-

A. isosceles
B. equilateral
C. right angled
D. none of these
Releted Question 4

If $$P = \left( {1,\,0} \right),\,Q = \left( { - 1,\,0} \right)$$     and $$R = \left( {2,\,0} \right)$$  are three given points, then locus of the point $$S$$ satisfying the relation $$S{Q^2} + S{R^2} = 2S{P^2},$$    is-

A. a straight line parallel to $$x$$-axis
B. a circle passing through the origin
C. a circle with the centre at the origin
D. a straight line parallel to $$y$$-axis

Practice More Releted MCQ Question on
Straight Lines


Practice More MCQ Question on Maths Section