Solution :
Co-ordinates of $$A = \left( {a\,\cos \,\alpha ,\,a\,\sin \,\alpha } \right)$$

Equation of OB,
$$\eqalign{
& y = \tan \left( {\frac{\pi }{4} + \alpha } \right)x \cr
& {\text{CA}}{ \bot ^{\text{r}}}{\text{OB}} \cr
& \therefore \,{\text{slope of CA }} = - \cot \left( {\frac{\pi }{4} + \alpha } \right) \cr} $$
Equation of CA
$$\eqalign{
& y - a\,\sin \,\alpha = - \cot \left( {\frac{\pi }{4} + \alpha } \right)\left( {x - a\,\cos \,\alpha } \right) \cr
& \Rightarrow \left( {y - a\,\sin \,\alpha } \right)\left( {\tan \left( {\frac{\pi }{4} + \alpha } \right)} \right) = \left( {a\,\cos \,\alpha - x} \right) \cr
& \Rightarrow \left( {y - a\,\sin \,\alpha } \right)\left( {\frac{{\tan \frac{\pi }{4} + \tan \,\alpha }}{{1 - \tan \frac{\pi }{4}\tan \,\alpha }}} \right) = \left( {a\,\cos \,\alpha - x} \right) \cr
& \Rightarrow \left( {y - a\,\sin \,\alpha } \right)\left( {1 + \tan \,\alpha } \right) = \left( {a\,\cos \,\alpha - x} \right)\left( {1 - \tan \,\alpha } \right) \cr
& \Rightarrow \left( {y - a\,\sin \,\alpha } \right)\left( {\cos \,\alpha + \,\sin \,\alpha } \right) = \left( {a\,\cos \,\alpha - x} \right)\left( {\cos \,\alpha - \sin \,\alpha } \right) \cr
& \Rightarrow y\left( {\cos \,\alpha + \sin \,\alpha } \right) - a\,\sin \,\alpha \,\cos \,\alpha - a\,{\sin ^2}\alpha = a\,{\cos ^2}\alpha - a\,\cos \,\alpha \,\sin \,\alpha - x\,\left( {\cos \,\alpha - a\,\sin \,\alpha } \right) \cr
& \Rightarrow y\left( {\cos \,\alpha + \,\sin \,\alpha } \right) + x\left( {\cos \,\alpha - \,\sin \,\alpha } \right) = a \cr
& y\left( {\,\sin \,\alpha + \,\cos \,\alpha } \right) + x\left( {\cos \,\alpha - \,\sin \,\alpha } \right) = a \cr} $$