Question

A square is inscribed in the circle $${x^2} + {y^2} - 2x + 4y + 3 = 0.$$      Its sides are parallel to the coordinate axes. The one vertex of the square is-

A. $$\left( {1 + \sqrt 2 ,\, - 2 } \right)$$
B. $$\left( {1 - \sqrt 2 ,\, - 2 } \right)$$
C. $$\left( {1 - 2 ,\, + \sqrt 2 } \right)$$
D. none of these  
Answer :   none of these
Solution :
The given circle is $${x^2} + {y^2} - 2x + 4y + 3 = 0.$$      Centre $$\left( {1,\, - 2} \right).$$  Lines through centre $$\left( {1,\, - 2} \right)$$  and parallel to axes are $$x=1$$  and $$y=-2$$
Circle mcq solution image
Let the side of square be $$2k.$$
Then sides of square are $$x =1-k$$   and $$x=1+k$$
and $$y=-2-k$$   and $$y=-2+k$$
$$\therefore $$ Co-ordinates of $$P,\,Q,\,R, \,S$$    are $$\left( {1 + k,\, - 2 + k} \right),\,\left( {1 - k,\, - 2 + k} \right),\,\left( {1 - k,\, - 2 - k} \right),\,\left( {1 + k,\, - 2 - k} \right)$$             respectively.
Also $$P\left( {1 + k,\, - 2 + k} \right)$$    lies on circle
$$\eqalign{ & \therefore {\left( {1 + k} \right)^2} + {\left( { - 2 + k} \right)^2} - 2\left( {1 + k} \right) + 4\left( { - 2 + k} \right) + 3 = 0 \cr & \Rightarrow 2{k^2} = 2 \cr & \Rightarrow k = 1\,\,{\text{or}}\,\, - 1 \cr & {\text{If }}k = 1, \cr & P\left( {2,\, - 1} \right),\,Q\left( {0,\, - 1} \right),\,R\left( {0,\, - 3} \right),\,S\left( {2,\, - 3} \right) \cr & {\text{If }}k = - 1, \cr & P\left( {0,\, - 3} \right),\,Q\left( {2,\, - 3} \right),\,R\left( {2,\, - 1} \right),\,S\left( {0,\, - 1} \right) \cr} $$

Releted MCQ Question on
Geometry >> Circle

Releted Question 1

A square is inscribed in the circle $${x^2} + {y^2} - 2x + 4y + 3 = 0.$$      Its sides are parallel to the coordinate axes. The one vertex of the square is-

A. $$\left( {1 + \sqrt 2 ,\, - 2 } \right)$$
B. $$\left( {1 - \sqrt 2 ,\, - 2 } \right)$$
C. $$\left( {1 - 2 ,\, + \sqrt 2 } \right)$$
D. none of these
Releted Question 2

Two circles $${x^2} + {y^2} = 6$$    and $${x^2} + {y^2} - 6x + 8 = 0$$     are given. Then the equation of the circle through their points of intersection and the point $$\left( {1,\,1} \right)$$  is-

A. $${x^2} + {y^2} - 6x + 4 = 0$$
B. $${x^2} + {y^2} - 3x + 1 = 0$$
C. $${x^2} + {y^2} - 4y + 2 = 0$$
D. none of these
Releted Question 3

The centre of the circle passing through the point (0, 1) and touching the curve $$y = {x^2}$$   at $$\left( {2,\,4} \right)$$  is-

A. $$\left( {\frac{{ - 16}}{5},\,\frac{{27}}{{10}}} \right)$$
B. $$\left( {\frac{{ - 16}}{7},\,\frac{{53}}{{10}}} \right)$$
C. $$\left( {\frac{{ - 16}}{5},\,\frac{{53}}{{10}}} \right)$$
D. none of these
Releted Question 4

The equation of the circle passing through $$\left( {1,\,1} \right)$$  and the points of intersection of $${x^2} + {y^2} + 13x - 3y = 0$$      and $$2{x^2} + 2{y^2} + 4x - 7y - 25 = 0$$      is-

A. $$4{x^2} + 4{y^2} - 30x - 10y - 25 = 0$$
B. $$4{x^2} + 4{y^2} + 30x - 13y - 25 = 0$$
C. $$4{x^2} + 4{y^2} - 17x - 10y + 25 = 0$$
D. none of these

Practice More Releted MCQ Question on
Circle


Practice More MCQ Question on Maths Section