A spring of spring constant $$5 \times {10^3}N/m$$ is stretched initially by $$5\,cm$$ from the unstretched position. Then the work required to stretch it further by another $$5\,cm$$ is
A particle of mass $$m$$ is moving in a circular path of constant radius $$r$$ such that its centripetal acceleration $${a_c}$$ is varying with time $$t$$ as $${a_c} = {k^2}r{t^2}$$ where $$k$$ is a constant. The power delivered to the particles by the force acting on it is:
A.
$$2\pi m{k^2}{r^2}t$$
B.
$$m{k^2}{r^2}t$$
C.
$$\frac{{\left( {m{k^4}{r^2}{t^5}} \right)}}{3}$$
A spring of force-constant $$k$$ is cut into two pieces such that one piece is double the length of the other. Then the long piece will have a force-constant of-