Question
A sonometer wire of length $$1.5\,m$$ is made of steel. The tension in it produces an elastic strain of $$1\% .$$ What is the fundamental frequency of steel if density and elasticity of steel are $$7.7 \times {10^3}\,kg/{m^3}$$ and $$2.2 \times {10^{11}}\,N/{m^2}$$ respectively ?
A.
$$188.5\,Hz$$
B.
$$178.2\,Hz$$
C.
$$200.5\,Hz$$
D.
$$770\,Hz$$
Answer :
$$178.2\,Hz$$
Solution :
Fundamental frequency,
$$\eqalign{
& f = \frac{v}{{2\ell }} = \frac{1}{{2\ell }}\sqrt {\frac{T}{\mu }} = \frac{1}{{2\ell }}\sqrt {\frac{T}{{A\rho }}} \cr
& \left[ {\because v = \sqrt {\frac{T}{\mu }} \,\,{\text{and}}\,\,\mu = \frac{m}{\ell }} \right] \cr
& {\text{Also,}}\,\,Y = \frac{{T\ell }}{{A\Delta \ell }} \Rightarrow \frac{T}{A} = \frac{{Y\Delta \ell }}{\ell } \cr
& \Rightarrow f = \frac{1}{{2\ell }}\sqrt {\frac{{\gamma \Delta \ell }}{{\ell \rho }}} \,......\left( {\text{i}} \right) \cr
& {\text{Putting}}\,{\text{the}}\,{\text{value of }}\,\,\ell ,\frac{{\Delta \ell }}{\ell },\rho \,\,{\text{and}}\,\gamma \,\,{\text{in}}\,{\text{e}}{{\text{q}}^{\text{n}}}{\text{.}}\left( {\text{i}} \right)\,{\text{we}}\,{\text{get}} \cr
& f = \sqrt {\frac{2}{7}} \times \frac{{{{10}^3}}}{3} \cr
& {\text{or,}}\,\,f \approx 178.2\,Hz \cr} $$