Question

A solid homogeneous sphere of mass $$M$$ and radius $$R$$ is moving on a rough horizontal surface, partly rolling and partly sliding. During this kind of motion of the sphere

A. total kinetic energy is conserved
B. the angular momentum of the sphere about the point of contact with the plane is conserved  
C. only the rotational kinetic energy about the centre of mass is conserved
D. angular momentum about the centre of mass is conserved
Answer :   the angular momentum of the sphere about the point of contact with the plane is conserved
Solution :
Angular momentum about the point of contact, for solid homogeneous sphere of mass $$M$$ and radius $$R$$ is conserved.

Releted MCQ Question on
Basic Physics >> Rotational Motion

Releted Question 1

A thin circular ring of mass $$M$$ and radius $$r$$ is rotating about its axis with a constant angular velocity $$\omega ,$$  Two objects, each of mass $$m,$$  are attached gently to the opposite ends of a diameter of the ring. The wheel now rotates with an angular velocity-

A. $$\frac{{\omega M}}{{\left( {M + m} \right)}}$$
B. $$\frac{{\omega \left( {M - 2m} \right)}}{{\left( {M + 2m} \right)}}$$
C. $$\frac{{\omega M}}{{\left( {M + 2m} \right)}}$$
D. $$\frac{{\omega \left( {M + 2m} \right)}}{M}$$
Releted Question 2

Two point masses of $$0.3 \,kg$$  and $$0.7 \,kg$$  are fixed at the ends of a rod of length $$1.4 \,m$$  and of negligible mass. The rod is set rotating about an axis perpendicular to its length with a uniform angular speed. The point on the rod through which the axis should pass in order that the work required for rotation of the rod is minimum, is located at a distance of-

A. $$0.42 \,m$$  from mass of $$0.3 \,kg$$
B. $$0.70 \,m$$  from mass of $$0.7 \,kg$$
C. $$0.98 \,m$$  from mass of $$0.3 \,kg$$
D. $$0.98 \,m$$  from mass of $$0.7 \,kg$$
Releted Question 3

A smooth sphere $$A$$  is moving on a frictionless horizontal plane with angular speed $$\omega $$  and centre of mass velocity $$\upsilon .$$  It collides elastically and head on with an identical sphere $$B$$  at rest. Neglect friction everywhere. After the collision, their angular speeds are $${\omega _A}$$  and $${\omega _B}$$  respectively. Then-

A. $${\omega _A} < {\omega _B}$$
B. $${\omega _A} = {\omega _B}$$
C. $${\omega _A} = \omega $$
D. $${\omega _B} = \omega $$
Releted Question 4

A disc of mass $$M$$  and radius $$R$$  is rolling with angular speed $$\omega $$  on a horizontal plane as shown in Figure. The magnitude of angular momentum of the disc about the origin $$O$$  is
Rotational Motion mcq question image

A. $$\left( {\frac{1}{2}} \right)M{R^2}\omega $$
B. $$M{R^2}\omega $$
C. $$\left( {\frac{3}{2}} \right)M{R^2}\omega $$
D. $$2M{R^2}\omega $$

Practice More Releted MCQ Question on
Rotational Motion


Practice More MCQ Question on Physics Section