Solution :
When solid cylinder rolls down on an inclined plane, then it has both rotational and translational kinetic energy

Total kinetic energy $$K = {K_{{\text{rot}}}} + {K_{{\text{trans}}}}$$
or $$K = \frac{1}{2}I{\omega ^2} + \frac{1}{2}m{v^2}$$
where, $$I =$$ moment of inertia of solid cylinder about its axis
$$ = \frac{1}{2}m{r^2}$$
$$\eqalign{
& \therefore K = \frac{1}{2}\left( {\frac{1}{2}m{r^2}} \right){\omega ^2} + \frac{1}{2}m{v^2} \cr
& = \frac{1}{4}m{v^2} + \frac{1}{2}m{v^2}\,\,\left( {{\text{as}}\,v = r\omega } \right) \cr
& = \frac{3}{4}m{v^2} \cr} $$
Now, gain in $$KE =$$ loss in $$PE$$
$$\eqalign{
& \therefore \frac{3}{4}m{v^2} = mgh \cr
& \Rightarrow v = \sqrt {\left( {\frac{4}{3}gh} \right)} \cr} $$