Solution :

Given, $$m = 50\,kg,\,r = 0.5\,m,\,\alpha = 2\,rev/{s^2}$$
⇒ Torque produced by the tension in the string
$$ = T \times r = T \times 0.5 = \frac{T}{2}N - m\,......\left( {\text{i}} \right)$$
We know $$\tau = I\alpha \,......\left( {{\text{ii}}} \right)$$
From Eqs. (i) and (ii), $$\frac{T}{2} = I\alpha $$
$$\eqalign{
& = \left( {\frac{{M{R^2}}}{2}} \right) \times \left( {2 \times 2\pi } \right)rad/{s^2}\,\,\left[ {{\text{because }}{I_{{\text{Solid}}\,{\text{cylinder}}}} = \frac{{M{R^2}}}{2}} \right] \cr
& \frac{T}{2} = \frac{{50 \times {{\left( {0.5} \right)}^2}}}{2} \times 4\pi \cr
& T = 50 \times \frac{1}{4} \times 4\pi = 50\,\pi = 157\,N \cr} $$