Question
A small object of uniform density rolls up a curved surface with an initial velocity $$v'.$$ It reaches upto a maximum height of $$\frac{{3{v^2}}}{{4g}}$$ with respect to the initial position. The object is
A.
ring
B.
solid sphere
C.
hollow sphere
D.
disc
Answer :
disc
Solution :
$$\eqalign{
& {\text{As,}}\,\,v = \sqrt {\frac{{2gh}}{{1 + \frac{{{k^2}}}{{{r^2}}}}}} \cr
& {\text{Given,}}\,\,h = \frac{{3{v^2}}}{{4g}} \cr
& {\text{So,}}\,\,{v^2} = \frac{{2gh}}{{1 + \frac{{{k^2}}}{{{r^2}}}}} \cr
& = \frac{{2g3{v^2}}}{{4g\left( {1 + \frac{{{k^2}}}{{{r^2}}}} \right)}} = \frac{{6g{v^2}}}{{4g\left( {1 + \frac{{{k^2}}}{{{r^2}}}} \right)}} \cr
& 1 = \frac{3}{{2\left( {1 + \frac{{{k^2}}}{{{I^2}}}} \right)}} \cr
& {\text{or}}\,\,1 + \frac{{{k^2}}}{{{r^2}}} = \frac{3}{2}\,\,{\text{or}}\,\,\frac{{{k^2}}}{{{r^2}}} = \frac{3}{2} - 1 = \frac{1}{2} \cr
& {k^2} = \frac{1}{2}{r^2}\,\,\left( {{\text{Equation of disc}}} \right) \cr} $$
Hence, the object is disc.