Solution :
Let $$G \equiv $$ original signal is green
⇒ $$P(G) = \frac{4}{5}$$
$${E_1}$$ $$ \equiv $$ $$A$$ receives the signal correctly $$P\left( {{E_1}} \right) = \frac{3}{4}$$
$${E_2}$$ $$ \equiv $$ $$B$$ receives the signal correctly $$P\left( {{E_2}} \right) = \frac{3}{4}$$
$$E \equiv $$ Signal received by $$B$$ is green.
Then $$E$$ can happen in the following ways
| Original Signal |
Received at A |
Received at B |
| Red $$ \to $$ |
Red $$ \to $$ |
Green |
| Red $$ \to $$ |
Green $$ \to $$ |
Green |
| Green $$ \to $$ |
Green $$ \to $$ |
Green |
| Green $$ \to $$ |
Red $$ \to $$ |
Green |
$$\eqalign{
& \therefore \,\,P\left( E \right) = \left( {\overline G \cap {E_1} \cap \overline {{E_2}} } \right) + \left( {\overline G \cap {E_1} \cap \overline {{E_2}} } \right) + P\left( {G \cap {E_1} \cap {E_2}} \right) + P\left( {G \cap \overline {{E_1}} \cap \overline {{E_2}} } \right) \cr
& = \frac{1}{5} \times \frac{3}{4} \times \frac{1}{4} + \frac{1}{5} \times \frac{3}{4} \times \frac{1}{4} + \frac{4}{5} \times \frac{3}{4} \times \frac{3}{4} + \frac{4}{5} \times \frac{1}{4} \times \frac{1}{4} \cr
& = \frac{{3 + 3 + 36 + 4}}{{80}} \cr
& = \frac{{46}}{{80}} \cr
& = \frac{{23}}{{40}} \cr} $$
$$\eqalign{
& \therefore \,\,P\left( {\frac{G}{E}} \right) = \frac{{P\left( {G \cap E} \right)}}{{P\left( E \right)}} \cr
& = \frac{{P\left( {G \cap {E_1} \cap {E_2}} \right) + P\left( {G \cap {{\overline E }_1} \cap {{\overline E }_2}} \right)}}{{P\left( E \right)}} \cr
& = \frac{{\frac{4}{5} \times \frac{3}{4} \times \frac{3}{4} + \frac{4}{5} \times \frac{1}{4} \times \frac{1}{4}}}{{\frac{{23}}{{40}}}} \cr
& = \frac{{\frac{{40}}{{80}}}}{{\frac{{23}}{{40}}}} \cr
& = \frac{{20}}{{23}} \cr} $$