Solution :
Net reactive capacitance,

$${X_C} = \frac{1}{{2\pi fC}}$$
So, current in circuit, $$I = \frac{V}{Z} = \frac{V}{{\sqrt {{R^2} + {{\left( {\frac{1}{{2\pi fC}}} \right)}^2}} }}$$
$$ \Rightarrow I = \frac{{2\pi fC}}{{\sqrt {4{\pi ^2}{f^2}{C^2}{R^2} + 1} }} \times V$$
Voltage drop across capacitor, $${V_C} = I \times {X_C}$$
$$ = \frac{{2\pi fC}}{{\sqrt {4{\pi ^2}{f^2}{C^2}{R^2} + 1} }} \times \frac{1}{{2\pi fC}}$$
i.e. $${V_C} = \frac{V}{{\sqrt {4{\pi ^2}{f^2}{C^2}{R^2} + 1} }}$$
When mica is introduced, capacitance will increase hence, voltage across capacitor get decrease.