Solution :

Consider a small element of length $$dx$$ of the rod at a distance $$x$$ and $$\left( {x + dx} \right)$$ from the wire.
The emf induced across the element
$$de = B\,v\,dx\,.......\left( {\text{i}} \right)$$
We know that magnetic field $$B$$ at a distance $$x$$ from a wire carrying a current $$i$$ is given by
$$B = \frac{{{\mu _0}}}{{2\pi }}.\frac{i}{x}\,.....\left( {{\text{ii}}} \right)$$
From eqs. (i) and (ii),
$$de = \frac{{{\mu _0}i}}{{2\pi x}}v\,dx\,......\left( {{\text{iii}}} \right)$$
The emf $$e$$ induced in the entire length of the rod $$PQ$$ is given by
$$\eqalign{
& e = \int {de} = \int_P^Q {\frac{{{\mu _0}}}{{2\pi }}\frac{i}{x}} v\,dx \cr
& = \int_r^{r + L} {\frac{{{\mu _0}}}{{2\pi }}\frac{i}{x}} v\,dx \cr
& = \frac{{{\mu _0}}}{{2\pi }}i\,v\int_r^{r + L} {\frac{{dx}}{x}} \cr
& = \frac{{{\mu _0}iv}}{{2\pi }}{\log _e}\left( {\frac{{r + L}}{r}} \right) \cr} $$