Question
A rod, of length $$L$$ at room temperature and uniform area of cross section $$A,$$ is made of a metal having co-efficient of linear expansion $$\frac{\alpha }{{^ \circ C}}.$$ It is observed that an external compressive force $$F,$$ is applied on each of its ends, prevents any change in the length of the rod, when its temperature rises by $$\Delta \,TK$$ Young’s modulus, $$Y,$$ for this metal is:
A.
$$\frac{{F}}{{A\alpha \,\Delta T}}$$
B.
$$\frac{F}{{A\alpha \,\left( {\Delta T - 273} \right)}}$$
C.
$$\frac{{2\,F}}{{2\,A\alpha \,\Delta T}}$$
D.
$$\frac{{2\,F}}{{A\alpha \,\Delta T}}$$
Answer :
$$\frac{{F}}{{A\alpha \,\Delta T}}$$
Solution :
Young’s modulus $$Y = \frac{{{\text{stress}}}}{{{\text{strain}}}}$$
$$ = \frac{{\frac{F}{A}}}{{\left( {\frac{{\Delta \ell }}{\ell }} \right)}}$$
Using, co - efficient of linear expansion,
$$\eqalign{
& \frac{{\Delta \ell }}{\ell } = \alpha \,\Delta T \cr
& \therefore \,\,Y = \frac{F}{{A\left( {\alpha \,\Delta T} \right)}} \cr} $$