Question

A region in the $$x$$-$$y$$ plane is bounded by the curve $$y = \sqrt {25 - {x^2}} $$   and the line $$y=0.$$  If the point $$\left( {a,\,a + 1} \right)$$   lies in the interior of the region then :

A. $$a\, \in \,\left( { - 4,\,3} \right)$$
B. $$a\, \in \,\left( { - \infty ,\, - 1} \right) \cup \left( {3,\, + \infty } \right)$$
C. $$a\, \in \,\left( { - 1,\,3} \right)$$  
D. none of these
Answer :   $$a\, \in \,\left( { - 1,\,3} \right)$$
Solution :
Circle mcq solution image
$$y = \sqrt {25 - {x^2}} ,\,y = 0$$     bound the semicircle above the $$x$$-axis.
$$\therefore \,\,a + 1 > 0{\text{ and }}{a^2} + {\left( {a + 1} \right)^2} - 25 < 0$$
Solve these and take the common values.

Releted MCQ Question on
Geometry >> Circle

Releted Question 1

A square is inscribed in the circle $${x^2} + {y^2} - 2x + 4y + 3 = 0.$$      Its sides are parallel to the coordinate axes. The one vertex of the square is-

A. $$\left( {1 + \sqrt 2 ,\, - 2 } \right)$$
B. $$\left( {1 - \sqrt 2 ,\, - 2 } \right)$$
C. $$\left( {1 - 2 ,\, + \sqrt 2 } \right)$$
D. none of these
Releted Question 2

Two circles $${x^2} + {y^2} = 6$$    and $${x^2} + {y^2} - 6x + 8 = 0$$     are given. Then the equation of the circle through their points of intersection and the point $$\left( {1,\,1} \right)$$  is-

A. $${x^2} + {y^2} - 6x + 4 = 0$$
B. $${x^2} + {y^2} - 3x + 1 = 0$$
C. $${x^2} + {y^2} - 4y + 2 = 0$$
D. none of these
Releted Question 3

The centre of the circle passing through the point (0, 1) and touching the curve $$y = {x^2}$$   at $$\left( {2,\,4} \right)$$  is-

A. $$\left( {\frac{{ - 16}}{5},\,\frac{{27}}{{10}}} \right)$$
B. $$\left( {\frac{{ - 16}}{7},\,\frac{{53}}{{10}}} \right)$$
C. $$\left( {\frac{{ - 16}}{5},\,\frac{{53}}{{10}}} \right)$$
D. none of these
Releted Question 4

The equation of the circle passing through $$\left( {1,\,1} \right)$$  and the points of intersection of $${x^2} + {y^2} + 13x - 3y = 0$$      and $$2{x^2} + 2{y^2} + 4x - 7y - 25 = 0$$      is-

A. $$4{x^2} + 4{y^2} - 30x - 10y - 25 = 0$$
B. $$4{x^2} + 4{y^2} + 30x - 13y - 25 = 0$$
C. $$4{x^2} + 4{y^2} - 17x - 10y + 25 = 0$$
D. none of these

Practice More Releted MCQ Question on
Circle


Practice More MCQ Question on Maths Section