Solution :
Given, $$N = 50$$
$$\eqalign{
& B = 0.2\,Wb/{m^2},I = 2A \cr
& \theta = {60^ \circ },A = 0.12 \times 0.1 = 0.012\,{m^2} \cr} $$

Thus, torque required to keep the coil in stable equilibrium, i.e.
$$\eqalign{
& \tau = NIAB\sin \theta = 50 \times 2 \times 0.012 \times 0.2 \times \sin {60^ \circ } \cr
& = 50 \times 2 \times 0.12 \times 0.2 \times \frac{{\sqrt 3 }}{2} = 0.20\,Nm \cr} $$